平衡二叉树

定义

它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

在这里插入图片描述

平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1,这里我们定义:

#define EH 0;
#define LH 1;
#define RH -1;//依次为等高,左高,右高。
typedef struct _BitNode
{
    int data;
    int bf;//平衡因子
    struct _BitNode *lchild,*rchild;
}BitNode,*BiTree;

平衡二叉树大部分操作和二叉查找树类似,主要不同在于插入删除的时候平衡二叉树的平衡可能被改变,并且只有从那些插入点到根结点的路径上的结点的平衡性可能被改变,因为只有这些结点的子树可能变化。

旋转:

前面说过,如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:

在这里插入图片描述
上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL
在这里插入图片描述上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一。

(1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。

(3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。

(4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。

LL旋转:

LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
在这里插入图片描述

代码:

 * LL:左左对应的情况(左单旋转)。
 *
 * 返回值:旋转后的根节点
 */
static Node* left_left_rotation(AVLTree k2)
{
    AVLTree k1;

    k1 = k2->left;
    k2->left = k1->right;
    k1->right = k2;

    k2->height = MAX( HEIGHT(k2->left), HEIGHT(k2->right)) + 1;
    k1->height = MAX( HEIGHT(k1->left), k2->height) + 1;

    return k1;
}
RR旋转:

理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:
在这里插入图片描述

代码:

/*
 * RR:右右对应的情况(右单旋转)。
 *
 * 返回值:旋转后的根节点
 */
static Node* right_right_rotation(AVLTree k1)
{
    AVLTree k2;

    k2 = k1->right;
    k1->right = k2->left;
    k2->left = k1;

    k1->height = MAX( HEIGHT(k1->left), HEIGHT(k1->right)) + 1;
    k2->height = MAX( HEIGHT(k2->right), k1->height) + 1;

    return k2;
}
LR的旋转

在这里插入图片描述

代码:

/*
 * LR:左右对应的情况(左双旋转)。
 *
 * 返回值:旋转后的根节点
 */
static Node* left_right_rotation(AVLTree k3)
{
    k3->left = right_right_rotation(k3->left);

    return left_left_rotation(k3);
}
RL的旋转:

在这里插入图片描述

代码:

/*
 * RL:右左对应的情况(右双旋转)。
 *
 * 返回值:旋转后的根节点
 */
static Node* right_left_rotation(AVLTree k1)
{
    k1->right = left_left_rotation(k1->right);

    return right_right_rotation(k1);
}

插入:

/* 
 * 将结点插入到AVL树中,并返回根节点
 *
 * 参数说明:
 *     tree AVL树的根结点
 *     key 插入的结点的键值
 * 返回值:
 *     根节点
 */
Node* avltree_insert(AVLTree tree, Type key)
{
    if (tree == NULL) 
    {
        // 新建节点
        tree = avltree_create_node(key, NULL, NULL);
        if (tree==NULL)
        {
            printf("ERROR: create avltree node failed!\n");
            return NULL;
        }
    }
    else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
    {
        tree->left = avltree_insert(tree->left, key);
        // 插入节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
        {
            if (key < tree->left->key)
                tree = left_left_rotation(tree);
            else
                tree = left_right_rotation(tree);
        }
    }
    else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
    {
        tree->right = avltree_insert(tree->right, key);
        // 插入节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
        {
            if (key > tree->right->key)
                tree = right_right_rotation(tree);
            else
                tree = right_left_rotation(tree);
        }
    }
    else //key == tree->key)
    {
        printf("添加失败:不允许添加相同的节点!\n");
    }

    tree->height = MAX( HEIGHT(tree->left), HEIGHT(tree->right)) + 1;

    return tree;
}

删除:

/* 
 * 删除结点(z),返回根节点
 *
 * 参数说明:
 *     ptree AVL树的根结点
 *     z 待删除的结点
 * 返回值:
 *     根节点
 */
static Node* delete_node(AVLTree tree, Node *z)
{
    // 根为空 或者 没有要删除的节点,直接返回NULL。
    if (tree==NULL || z==NULL)
        return NULL;

    if (z->key < tree->key)        // 待删除的节点在"tree的左子树"中
    {
        tree->left = delete_node(tree->left, z);
        // 删除节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->right) - HEIGHT(tree->left) == 2)
        {
            Node *r =  tree->right;
            if (HEIGHT(r->left) > HEIGHT(r->right))
                tree = right_left_rotation(tree);
            else
                tree = right_right_rotation(tree);
        }
    }
    else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
    {
        tree->right = delete_node(tree->right, z);
        // 删除节点后,若AVL树失去平衡,则进行相应的调节。
        if (HEIGHT(tree->left) - HEIGHT(tree->right) == 2)
        {
            Node *l =  tree->left;
            if (HEIGHT(l->right) > HEIGHT(l->left))
                tree = left_right_rotation(tree);
            else
                tree = left_left_rotation(tree);
        }
    }
    else    // tree是对应要删除的节点。
    {
        // tree的左右孩子都非空
        if ((tree->left) && (tree->right))
        {
            if (HEIGHT(tree->left) > HEIGHT(tree->right))
            {
                // 如果tree的左子树比右子树高;
                // 则(01)找出tree的左子树中的最大节点
                //   (02)将该最大节点的值赋值给tree。
                //   (03)删除该最大节点。
                // 这类似于用"tree的左子树中最大节点"做"tree"的替身;
                // 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
                Node *max = avltree_maximum(tree->left);
                tree->key = max->key;
                tree->left = delete_node(tree->left, max);
            }
            else
            {
                // 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
                // 则(01)找出tree的右子树中的最小节点
                //   (02)将该最小节点的值赋值给tree。
                //   (03)删除该最小节点。
                // 这类似于用"tree的右子树中最小节点"做"tree"的替身;
                // 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
                Node *min = avltree_maximum(tree->right);
                tree->key = min->key;
                tree->right = delete_node(tree->right, min);
            }
        }
        else
        {
            Node *tmp = tree;
            tree = tree->left ? tree->left : tree->right;
            free(tmp);
        }
    }

    return tree;
}

/* 
 * 删除结点(key是节点值),返回根节点
 *
 * 参数说明:
 *     tree AVL树的根结点
 *     key 待删除的结点的键值
 * 返回值:
 *     根节点
 */
Node* avltree_delete(AVLTree tree, Type key)
{
    Node *z; 

    if ((z = avltree_search(tree, key)) != NULL)
        tree = delete_node(tree, z);
    return tree;
}
内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值