Codeforces educational round 46 B Light It Up(贪心+维护变量)

本文介绍了一个关于编程智能灯泡的问题,灯泡在00时刻开启,MM时刻关闭,用户可以插入最多一个元素到预设的开关计划中,以使灯泡亮起的总时间最大化。题目给出了详细的操作规则和例子,要求找到最佳的插入位置以达到最大亮灯时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Light It Up
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Recently, you bought a brand new smart lamp with programming features. At first, you set up a schedule to the lamp. Every day it will turn power on at moment 00 and turn power off at moment MM. Moreover, the lamp allows you to set a program of switching its state (states are "lights on" and "lights off"). Unfortunately, some program is already installed into the lamp.

The lamp allows only good programs. Good program can be represented as a non-empty array aa, where 0<a1<a2<<a|a|<M0<a1<a2<⋯<a|a|<M. All aiai must be integers. Of course, preinstalled program is a good program.

The lamp follows program aa in next manner: at moment 00 turns power and light on. Then at moment aiai the lamp flips its state to opposite (if it was lit, it turns off, and vice versa). The state of the lamp flips instantly: for example, if you turn the light off at moment 11 and then do nothing, the total time when the lamp is lit will be 11. Finally, at moment MM the lamp is turning its power off regardless of its state.

Since you are not among those people who read instructions, and you don't understand the language it's written in, you realize (after some testing) the only possible way to alter the preinstalled program. You can insert at most one element into the program aa, so it still should be a good program after alteration. Insertion can be done between any pair of consecutive elements of aa, or even at the begining or at the end of aa.

Find such a way to alter the program that the total time when the lamp is lit is maximum possible. Maybe you should leave program untouched. If the lamp is lit from xx till moment yy, then its lit for yxy−x units of time. Segments of time when the lamp is lit are summed up.

Input

First line contains two space separated integers nn and MM (1n1051≤n≤105, 2M1092≤M≤109) — the length of program aa and the moment when power turns off.

Second line contains nn space separated integers a1,a2,,ana1,a2,…,an (0<a1<a2<<an<M0<a1<a2<⋯<an<M) — initially installed program aa.

Output

Print the only integer — maximum possible total time when the lamp is lit.

Examples
Input
Copy
3 10
4 6 7
Output
Copy
8
Input
Copy
2 12
1 10
Output
Copy
9
Input
Copy
2 7
3 4
Output
Copy
6

Note

In the first example, one of possible optimal solutions is to insert value x=3x=3 before a1a1, so program will be [3,4,6,7][3,4,6,7] and time of lamp being lit equals (30)+(64)+(107)=8(3−0)+(6−4)+(10−7)=8. Other possible solution is to insert x=5x=5 in appropriate place.

In the second example, there is only one optimal solution: to insert x=2x=2 between a1a1 and a2a2. Program will become [1,2,10][1,2,10], and answer will be (10)+(102)=9(1−0)+(10−2)=9.

In the third example, optimal answer is to leave program untouched, so answer will be (30)+(74)=6(3−0)+(7−4)=6.


#include<algorithm>
#include<iostream>
#include<string>
#include<map>//int dx[4]={0,0,-1,1};int dy[4]={-1,1,0,0};
#include<set>//int gcd(int a,int b){return b?gcd(b,a%b):a;}
#include<vector>
#include<cmath>
#include<stack>
#include<string.h>
#include<stdlib.h>
#include<cstdio>
#define maxn 100005
#define UB (maxn*64)
#define ll __int64
#define INF 10000000
using namespace std;
int tim[maxn],seq[maxn];
/*
题目大意:具体的题目意思我也没看,实际概念而已,
再加上考翻译,,很浪费时间,,直接看数据,并通过简单的题目浏览去理解,
一般没啥问题(英语差的人的苟且偷生)。

给定n个数,和上界m,
即在0到m个区间内插入n个数,形成n+1个区间,
区间长度提取出来单独成一个序列。

可以选择其中一个数分裂,(x=y+z),
分裂后的奇数序和(tim[1]+tim[3]+....)
问最大化是多少。

贪心在于,拆分肯定是1和n-1(n本身为1可以略过)
*/
//long long compute(int x,int y)
//{
//    if(x>y) return 0;
//    long long ans=0;
//    while(x<=y)
//    {
//        ans+=tim[x];
//         x+=2;
//    }
//    return ans;
//}
long long tot;
int main()
{
    int n,m;
    cin>>n>>m;
    seq[1]=0;
    for(int i=1;i<=n;i++) cin>>seq[i];
    seq[n+1]=m;
    long long tp,ans=0;
    long long oddsum=0,totsum=0,tmp,tmpans;
    for(int i=1;i<=n+1;i++)
    {
        tim[i]=seq[i]-seq[i-1];
        if(i&1) ans+=tim[i];
        tot+=tim[i];///总和
    }
    tmpans=ans;///奇数和
    for(int i=1;i<=n+1;i++)
    {
       if ( i & 1 ) oddsum += tim [i];///遍历中维护的奇数和

        totsum += tim[i];///遍历中维护的总数和
        tp = 0;
        tmp = tmpans - oddsum;///i+1~n+1的奇数和

        if( i & 1 )   tp = tot-totsum - tmp ;
        else    tp = tmp;///如果是偶数,则应取i+2~n+1的奇数和,和i+1~n+1奇数和互补,即和固定。
        ///(该常数和可以通过维护的变量求出)

        ans=max(ans,tp-1+oddsum);///式子经过化简,oddsum里面包含了tim[i],贪心思想体现在,,如果tim[i]要分裂,
        ///那么一定会分裂成1和tim[i]-1。
        //else    ans=max(ans,tp-1+oddsum);
    }
    cout<<ans<<endl;
    return 0;
}

### Codeforces Educational Round 26 比赛详情 Codeforces是一个面向全球程序员的比赛平台,其中Educational Rounds旨在帮助参与者提高算法技能并学习新技巧。对于具体的Educational Round 26而言,这类比赛通常具有如下特点: - **时间限制**:每道题目的解答需在规定时间内完成,一般为1秒。 - **内存限制**:程序运行所占用的最大内存量被限定,通常是256兆字节。 - 输入输出方式标准化,即通过标准输入读取数据并通过标准输出打印结果。 然而,关于Educational Round 26的具体题目细节并未直接提及于提供的参考资料中。为了提供更精确的信息,下面基于以往的教育轮次给出一些常见的题目类型及其解决方案思路[^1]。 ### 题目示例与解析 虽然无法确切描述Educational Round 26中的具体问题,但可以根据过往的经验推测可能涉及的问题类别以及解决这些问题的一般方法论。 #### 类型一:贪心策略的应用 考虑一个问题场景,在该场景下需要照亮一系列连续排列的对象。假设存在若干光源能够覆盖一定范围内的对象,则可以通过遍历整个序列,并利用贪心的思想决定何时放置新的光源以确保所有目标都被有效照射到。这种情况下,重要的是保持追踪当前最远可到达位置,并据此做出决策。 ```cpp #include <bits/stdc++.h> using namespace std; bool solve(vector<int>& a) { int maxReach = 0; for (size_t i = 0; i < a.size(); ++i) { if (maxReach < i && !a[i]) return false; if (a[i]) maxReach = max(maxReach, static_cast<int>(i) + a[i]); } return true; } ``` #### 类型二:栈结构处理匹配关系 另一个常见问题是涉及到成对出现元素之间的关联性判断,比如括号表达式的合法性验证。这里可以采用`<int>`类型的栈来记录左括号的位置索引;每当遇到右括号时就弹出最近一次压入栈底的那个数值作为配对依据,进而计算两者间的跨度长度累加至总数之中[^2]。 ```cpp #include <stack> long long calculateParens(const string& s) { stack<long long> positions; long long num = 0; for(long long i = 0 ; i<s.length() ;++i){ char c=s[i]; if(c=='('){ positions.push(i); }else{ if(!positions.empty()){ auto pos=positions.top(); positions.pop(); num+=i-pos; } } } return num; } ``` #### 类型三:特定模式下的枚举法 针对某些特殊条件约束下的计数类问题,如寻找符合条件的三位整数的数量。此时可通过列举所有可能性的方式逐一检验是否符合给定规则,从而统计满足要求的结果数目。例如求解形如\(abc\)形式且不含重复数字的正整数集合大小[^3]。 ```cpp vector<int> generateSpecialNumbers(int n) { vector<int> result; for (int i = 1; i <= min(n / 100, 9); ++i) for (int j = 0; j <= min((n - 100 * i) / 10, 9); ++j) for (int k = 0; k <= min(n % 10, 9); ++k) if ((100*i + 10*j + k)<=n&&!(i==0||j==0)) result.emplace_back(100*i+10*j+k); sort(begin(result), end(result)); return result; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值