整理 野火 《FreeRTOS 内核实现与应用开发实战指南》—基于野火 STM32 全系列(M3/4/7)开发板
文章目录
第9章 空闲任务与阻塞延时的实现
在上一章节中,任务体内的延时使用的是软件延时
,即还是让 CPU 空等来达到延时的效果
。RTOS 中的延时叫阻塞延时
,即任务需要延时的时候,任务会放弃 CPU 的使用权,CPU 可以去干其它的事情,当任务延时时间到,重新获取 CPU 使用权,任务继续运行,这样就充分地利用了 CPU 的资源,而不是干等着。
9.1 实现空闲任务
9.1.1 定义空闲任务的栈
/* 定义空闲任务的栈 */
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 128 )
StackType_t IdleTaskStack[configMINIMAL_STACK_SIZE];
9.1.2 定义空闲任务的任务控制块
/* 定义空闲任务的任务控制块 */
TCB_t IdleTaskTCB;
9.1.3 创建空闲任务
当定义好空闲任务的栈,任务控制块后,就可以创建空闲任务。空闲任务在调度器启动函数 vTaskStartScheduler()
中创建。
extern TCB_t IdleTaskTCB;
void vApplicationGetIdleTaskMemory( TCB_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize );
void vTaskStartScheduler( void )
{
/*=======================创建空闲任务 start=======================*/
TCB_t *pxIdleTaskTCBBuffer = NULL; /* 用于指向空闲任务控制块 */
StackType_t *pxIdleTaskStackBuffer = NULL; /* 用于空闲任务栈起始地址 */
uint32_t ulIdleTaskStackSize;
/* 获取空闲任务的内存:任务栈和任务 TCB */
vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer,
&pxIdleTaskStackBuffer,
&ulIdleTaskStackSize );
/* 创建空闲任务 */ (
xIdleTaskHandle = xTaskCreateStatic((TaskFunction_t)prvIdleTask, /* 任务入口 */
(char *)"IDLE", /* 任务名称,字符串形式 */
(uint32_t)ulIdleTaskStackSize , /* 任务栈大小,单位为字 */
(void *) NULL, /* 任务形参 */
(StackType_t *)pxIdleTaskStackBuffer, /* 任务栈起始地址 */
(TCB_t *)pxIdleTaskTCBBuffer ); /* 任务控制块 */
/* 将任务添加到就绪列表 */
vListInsertEnd( &( pxReadyTasksLists[0] ),
&( ((TCB_t *)pxIdleTaskTCBBuffer)->xStateListItem ) );
/*==========================创建空闲任务 end=====================*/
/* 手动指定第一个运行的任务 */
pxCurrentTCB = &Task1TCB;
/* 启动调度器 */
if ( xPortStartScheduler() != pdFALSE )
{
/* 调度器启动成功,则不会返回,即不会来到这里 */
}
}
vApplicationGetIdleTaskMemory()函数
void vApplicationGetIdleTaskMemory( TCB_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize )
{
*ppxIdleTaskTCBBuffer=&IdleTaskTCB;
*ppxIdleTaskStackBuffer=IdleTaskStack;
*pulIdleTaskStackSize=configMINIMAL_STACK_SIZE;
}
9.2 实现阻塞延时
9.2.1 vTaskDelay ()函数
阻塞延时的阻塞是指任务调用该延时函数后,任务会被剥离 CPU 使用权,然后进入阻塞状态,直到延时结束,任务重新获取 CPU 使用权才可以继续运行
。在任务阻塞的这段时间,CPU 可以去执行其它的任务,如果其它的任务也在延时状态,那么 CPU 就将运行空闲任务。
vTaskDelay()函数:
void vTaskDelay( const TickType_t xTicksToDelay )
{
TCB_t *pxTCB = NULL;
/* 获取当前任务的TCB */
pxTCB = pxCurrentTCB;
/* 设置延时时间 */
pxTCB->xTicksToDelay = xTicksToDelay;
/* 将任务从就绪列表移除 */
//uxListRemove( &( pxTCB->xStateListItem ) );
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
/* 任务切换 */
taskYIELD();
}
xTicksToDelay 定义:
typedef struct tskTaskControlBlock
{
volatile StackType_t *pxTopOfStack; /* 栈顶 */
ListItem_t xStateListItem; /* 任务节点 */
StackType_t *pxStack; /* 任务栈起始地址 */
/* 任务名称,字符串形式 */
char pcTaskName[ configMAX_TASK_NAME_LEN ];
TickType_t xTicksToDelay; /* 用于延时 */
UBaseType_t uxPriority;
} tskTCB;
9.2.2 修改 vTaskSwitchContext()函数
调用 tashYIELD()
会产生 PendSV
中断,在 PendSV
中断服务函数中会调用上下文切换函数 vTaskSwitchContext()
,该函数的作用是寻找最高优先级的就绪任务,然后更新 pxCurrentTCB
。
vTaskSwitchContext()函数
#if 0
void vTaskSwitchContext( void )
{
if( pxCurrentTCB == &Task1TCB )
{
pxCurrentTCB = &Task2TCB;
}
else
{
pxCurrentTCB = &Task1TCB;
}
}
#else
void vTaskSwitchContext( void )
{
/* 如果当前线程是空闲线程,那么就去尝试执行线程1或者线程2,
看看他们的延时时间是否结束,如果线程的延时时间均没有到期,
那就返回继续执行空闲线程 */
if( pxCurrentTCB == &IdleTaskTCB )
{
if(Task1TCB.xTicksToDelay == 0)
{
pxCurrentTCB =&Task1TCB;
}
else if(Task2TCB.xTicksToDelay == 0)
{
pxCurrentTCB =&Task2TCB;
}
else
{
return; /* 线程延时均没有到期则返回,继续执行空闲线程 */
}
}
else
{
/*如果当前线程是线程1或者线程2的话,检查下另外一个线程,如果另外的线程不在延时中,就切换到该线程
否则,判断下当前线程是否应该进入延时状态,如果是的话,就切换到空闲线程。否则就不进行任何切换 */
if(pxCurrentTCB == &Task1TCB)
{
if(Task2TCB.xTicksToDelay == 0)
{
pxCurrentTCB =&Task2TCB;
}
else if(pxCurrentTCB->xTicksToDelay != 0)
{
pxCurrentTCB = &IdleTaskTCB;
}
else
{
return; /* 返回,不进行切换,因为两个线程都处于延时中 */
}
}
else if(pxCurrentTCB == &Task2TCB)
{
if(Task1TCB.xTicksToDelay == 0)
{
pxCurrentTCB =&Task1TCB;
}
else if(pxCurrentTCB->xTicksToDelay != 0)
{
pxCurrentTCB = &IdleTaskTCB;
}
else
{
return; /* 返回,不进行切换,因为两个线程都处于延时中 */
}
}
}
}
#endif
9.3 SysTick 中断服务函数
在任务上下文切换函数 vTaskSwitchContext ()中,会判断每个任务的任务控制块中的延时成员 xTicksToDelay 的值是否为 0
,如果为 0就要将对应的任务就绪,如果不为 0 就继续延时。xTicksToDelay
是以什么周期在递减?在哪里递减?在FreeRTOS
中,这个周期由 SysTick
中断提供,操作系统里面的最小的时间单位就是SysTick
的中断周期,我们称之为一个 tick
,SysTick
中断服务函数在 port.c.c
中实现。
void xPortSysTickHandler( void )
{
/* 关中断 */
vPortRaiseBASEPRI();
/* 更新系统时基 */
xTaskIncrementTick();
/* 开中断 */
vPortClearBASEPRIFromISR();
}
9.3.1 xTaskIncrementTick()函数
更新系统时基,该函数在 task.c 中定义。
void xTaskIncrementTick( void )
{
TCB_t *pxTCB = NULL;
BaseType_t i = 0;
/* 更新系统时基计数器xTickCount,xTickCount是一个在port.c中定义的全局变量 */
const TickType_t xConstTickCount = xTickCount + 1;
xTickCount = xConstTickCount;
/* 扫描就绪列表中所有线程的xTicksToDelay,如果不为0,则减1 */
for(i=0; i<configMAX_PRIORITIES; i++)
{
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &pxReadyTasksLists[i] ) );
if(pxTCB->xTicksToDelay > 0)
{
pxTCB->xTicksToDelay --;
}
}
/* 任务切换 */
portYIELD();
}
9.4 SysTick 初始化函数
/* SysTick 控制寄存器 */
#define portNVIC_SYSTICK_CTRL_REG (*((volatile uint32_t *) 0xe000e010 ))
/* SysTick 重装载寄存器寄存器 */
#define portNVIC_SYSTICK_LOAD_REG (*((volatile uint32_t *) 0xe000e014 ))
/* SysTick 时钟源选择 */
#ifndef configSYSTICK_CLOCK_HZ
#define configSYSTICK_CLOCK_HZ configCPU_CLOCK_HZ
/* 确保 SysTick 的时钟与内核时钟一致 */
#define portNVIC_SYSTICK_CLK_BIT ( 1UL << 2UL )
#else
#define portNVIC_SYSTICK_CLK_BIT ( 0 )
#endif
#define portNVIC_SYSTICK_INT_BIT ( 1UL << 1UL )
#define portNVIC_SYSTICK_ENABLE_BIT ( 1UL << 0UL )
void vPortSetupTimerInterrupt( void )
{
/* 设置重装载寄存器的值 */
portNVIC_SYSTICK_LOAD_REG = ( configSYSTICK_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
/* 设置系统定时器的时钟等于内核时钟
使能 SysTick 定时器中断
使能 SysTick 定时器 */
portNVIC_SYSTICK_CTRL_REG = ( portNVIC_SYSTICK_CLK_BIT |
portNVIC_SYSTICK_INT_BIT |
portNVIC_SYSTICK_ENABLE_BIT );
}
xPortStartScheduler()函数中调用 vPortSetupTimerInterrupt():
BaseType_t xPortStartScheduler( void )
{
/* 配置PendSV 和 SysTick 的中断优先级为最低 */
portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;
portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;
/* 初始化SysTick */
vPortSetupTimerInterrupt();
/* 启动第一个任务,不再返回 */
prvStartFirstTask();
/* 不应该运行到这里 */
return 0;
}
2 configCPU_CLOCK_HZ 与 configTICK_RATE_HZ 宏定义:
#define configCPU_CLOCK_HZ (( unsigned long ) 25000000)
#define configTICK_RATE_HZ (( TickType_t ) 100)