神经网络模型建立步骤

在构建深度学习模型如CNN时,需要遵循一系列步骤:首先进行损失合理性检查,确保随机权重下损失合理;其次,执行梯度检查,验证反向传播的正确性,避免隐藏层过大;接着,在小规模数据上过拟合,以达到高训练准确率;然后,训练完整网络,选择合适的层结构;最后,调整超参数以优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

When establish a deep learning model like CNN, we should follow these steps below.

1.Sanity check your loss.

IF You use a softmax classifier, we expect the loss for random weights (with no regularization) to be about logC where C d/enotes the number of classes.

2. Gradient check

You should use a small set of training data or even a random dataset to make sure that the backward pass you implenments is correct. BY THE WAY, you not have to set the hidden layers’ dimension or the number of hidden layers too large.

3. Overfit a small dataset

In this step, you should randomly choose just a few training samples (say 100 or 200). Your basic model should have a high training accuracy and comparatively low validation accuracy.

4. Train the Net

In this step an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值