注:以jdk中的一角来理解设计模式的运用
策略模式:
在不同的情形下选取不同的方式去处理
比如:jdk中的 java.util.Arrays.sort() 方法,则是根据待排序数组的初始的有序程度,以及规模来选取不同的排序方式处理排序
具体实现是这个方法:
策略1:对于小数组,直接使用"快排"1
策略2:对于不是高度结构化(各区间内有序)的数组,执行"快排"
策略3:高度结构化的,使用归并排序
//left 与right 框定此次排序的操作区间
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
策略1:对于小数组,直接使用快排
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
/*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
* run[i]记录第i次run得到的有序序列区间起始下标
* 即:数组索引在区间run[i]至run[i+1],表示数组的这部分片段是有序的
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;
// Check if the array is nearly sorted
//检测数组是否接近有序
for (int k = left; k < right; run[count] = k) {
// 框定升序区间
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
//框定降序区间,获得降序区间后,从两侧向中间,对换元素,改变成升序区间
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo];
a[lo] = a[hi];
a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
//检测(其实也做了部分的简单排序,将降序序列变为升序序列)次数用完之后,执行排序
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}
/*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
策略2. 如果数组不是高度的结构化(也就是指区间有序),直接使用快排,而不是使用归并排序
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}
// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
}
策略3.如果数组是高度结构化(也就是满足归并排序的条件,执行归并排序)
// Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);
// Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
}
// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
}
private static void sort(int[] a, int left, int right, boolean
leftmost)
第三个参数是比较有意思的:
用来标记是否是左边有序元素更多,如果是则使用插入排序,否则是执行其他策略,优化操作,具体可以参见jdk源码