运动想象 (MI) 分类学习系列 (11) :GITGAN

论文GITGAN提出了一种无监督的端到端受试者适应方法,专注于解决源数据质量和分布外目标数据问题。该方法结合生成对抗网络进行跨受试者转移,改善BCI系统的性能。通过异常值去除、领域适配和标签一致性策略,提高了模型的性能和可解释性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.sciencedirect.com/science/article/abs/pii/S0031320323007124
论文题目:GITGAN: Generative inter-subject transfer for EEG motor imagery analysis
论文代码:https://github.com/Kang1121/GITGAN

0. 引言

以往的研究主要集中在开发复杂的网络架构设计上,忽视了源数据质量的影响和分布外目标数据问题带来的挑战。为了解决这些局限性,我们认为,以目标数据为中心的空间,加上精心挑选的一组高质量源数据,可以显着增强发展议程。在这项研究中,我们提出了一种称为 GITGAN 的无监督端到端受试者适应方法,这是一种用于脑电图运动图像分析的生成性受试者间转移。我们还提出了一种实用有效的源数据选择方法,进一步提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值