运动想象 (MI) 迁移学习系列 (14) : EEGNet-Fine tuning

本文探讨了一种基于运动想象(MI)康复的脑机接口(BCI)系统,采用深度学习网络中的EEGNet模型,并通过微调进行迁移学习。研究发现,微调能有效提高脑卒中患者BCI系统的性能,验证了该方法的有效性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.nature.com/articles/s41598-021-99114-1#citeas
论文题目:A transfer learning framework based on motor imagery rehabilitation for stroke
论文代码:无

0. 引言

深度学习网络已成功应用于传递函数,使模型可以从源域适应到不同的目标域。本研究利用多个卷积神经网络对脑卒中患者的脑电图(EEG)进行解码,设计有效的运动意象(MI)脑机接口(BCI)系统。这项研究引入了 “微调” 来传输模型参数并减少训练时间。所提出的框架的性能是通过模型的两类MI识别能力来评估的。

总得来说:这是一篇较老的文章,进一步说明了EEGNet模型的普适性与优越性(效果好且稳定)。

1. 主要贡献

  1. 比较多个模型的实验结果,可以推断EEGNet是所有框架中迁移学习的最佳网络模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值