运动想象 (MI) 迁移学习系列 (4) : EEGNet-Fusion-V2

论文提出了一种多分支卷积神经网络 EEGNet Fusion V2,用于运动想象任务的分类,尤其在跨任务分类上表现出色。通过与先进模型比较,五分支模型在保持高精度的同时减少了计算时间,优于其他分支数量的模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.mdpi.com/1424-8220/23/18/7908
论文题目:Excellent fine-tuning: From specific-subject classification to cross-task classification for motor imagery
论文代码:https://github.com/radia-rayan-chowdhury/EEGNet-Fusion-V2

0. 引言

基于脑电图的脑机接口开发的一个重大障碍是与受试者无关的运动图像数据的分类,因为脑电图数据非常个性化卷积神经网络 (CNN) 等深度学习技术已经说明了它们对特征提取的影响,以提高分类准确性。在本文中,我们提出了一个多分支(五个分支)二维卷积神经网络,该网络对每个分支都使用多个超参数。所提出的模型在跨学科分类方面取得了可喜

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值