2013北理机试题——中缀算术表达式对应二叉树的先序遍历

题目

编写程序:输入表达式,输出相应二叉树的先序遍历结果
输入: a+b*(c-d)-e/f
输出: -+a*b-cd/ef


分析

北理看起来很喜欢考这种题,这个知识点在北理近几年的考研初试试卷中多次出现了。首先要知道的是常见的中缀表达式正是表达式树的中序遍历,相应的:后缀表达式对应表达式树的后序遍历。

但此题也不能直接转化为:通过中序和后序序列求得先序遍历,即使用上一篇博客所记录的方法。因为很多个字符在这个字符串里并不是唯一的。于是尝试使用后缀式直接建立一颗二叉树。

首先一个问题是,如何将中缀式变为后缀式。王道辅导书上的方法为:

  1. 从左到右扫描中缀表达式。
  2. 遇到数字时,加入后缀表达式。
  3. 遇到运算符时:
    1. 若为( :入栈
    2. 若为) :把栈中运算符依次加入到后缀式中,直到遇到(,并删除之。
    3. 其他运算符:栈内的想出来,栈外的想进去(多么现实^ = ^),谁的优先级高就听谁的。
运算符 ( +,- *,/ )
in Stack Priority(ISP) 1 3 5 6
in Comming Priority(ICP) 6 2 4 1

中缀转后缀代码如下:

#include<iostream>
#include<vector>
#include<stack>
#include<map>
using namespace std;
string inOrder, postOrder;

int main()
{
   
	cin >> inOrder;
	stack<char> st;
	map<char, int> isp{
    {
   '(',1},{
   '*',5},{
   '/',5},{
   '+',3},{
   '-',3},{
   ')',6} };
	map<char, int> icp{
    {
   '(',6},{
   '*',4},{
   '/',4},{
   '+',2},{
   '-',2},{
   ')',1} };

	for (int i = 0; i < inOrder.length(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值