#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<iostream>
using namespace std;
using namespace cv;
//指针访问像素
void colorReduce1(Mat &dstImage, Mat &outputImage, int div)
{
outputImage = dstImage.clone();//复制实参到临时变量
int rowNumber = outputImage.rows;//行数
//列数*通道数=每一行元素个数,灰度图通道数为1,彩色图为3
int colNumber = outputImage.cols*outputImage.channels();
for (int i = 0; i < rowNumber; i++)
{
uchar *data = outputImage.ptr<uchar>(i);//获取第i行首地址
for (int j = 0; j < colNumber; j++)
{
//处理每个像素
data[j] = data[j] / div * div + div / 2;
}
}
}
//迭代器访问像素
void colorReduce2(Mat &dstImage, Mat &outputImage, int div)
{
outputImage = dstImage.clone();//复制实参到临时变量
Mat_<Vec3b>::iterator it = outputImage.begin<Vec3b>();
Mat_<Vec3b>::iterator itend = outputImage.end<Vec3b>();
//对于彩色图像像素
for (; it != itend; it++)
{
//开始处理每个像素
(*it)[0] = (*it)[0] / div * div + div / 2;
(*it)[1] = (*it)[1] / div * div + div / 2;
(*it)[2] = (*it)[2] / div * div + div / 2;
}
}
//动态地址计算
void colorReduce3(Mat &dstImage, Mat &outputImage, int div)
{
outputImage = dstImage.clone();//复制实参到临时变量
int rowNumber = outputImage.rows;//行数
//列数*通道数=每一行元素个数,灰度图通道数为1,彩色图为3
int colNumber = outputImage.cols*outputImage.channels();
for (int i = 0; i < rowNumber; i++)
{
for (int j = 0; j < colNumber; j++)
{
//处理每个像素
outputImage.at<Vec3b>(i, j)[0] = outputImage.at<Vec3b>(i, j)[0] / div * div + div / 2;
outputImage.at<Vec3b>(i, j)[1] = outputImage.at<Vec3b>(i, j)[1] / div * div + div / 2;
outputImage.at<Vec3b>(i, j)[2] = outputImage.at<Vec3b>(i, j)[2] / div * div + div / 2;
}
}
}
int main()
{
//原始图像
Mat srcImage = imread("lena.jpg");
imshow("原始图像", srcImage);
//创建效果图
Mat dstImage;
//效果图的大小、类型与原图相同
dstImage.create(srcImage.rows, srcImage.cols, srcImage.type());
//记录起始时间
double time0 = static_cast<double>(getTickCount());
colorReduce1(srcImage, dstImage, 32);
time0 = ((double)getTickCount() - time0) / getTickFrequency();
cout << "指针访问像素运行时间:" << time0 << "秒\n";
imshow("效果图", dstImage);
waitKey(0);
}
运行结果:
可以看出图像压缩之后变模糊了。