We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated.
XX <- domino XX <- "L" tromino X
Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.
(In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)
Example: Input: 3 Output: 5 Explanation: The five different ways are listed below, different letters indicates different tiles: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY
Note:
- N will be in range
[1, 1000]
.
题意:
有L字形和I字形的两种地板砖,问拼成2*N的地板砖有多少种方法。
思路:
可以说是很坑的了。咋一看天真地以为dp[i]=dp[i-1]+dp[i-2]+2*dp[i-3],实质上忽略了一种特殊情况,即LIL,其中I是横着的那种情况。所以用一个二维dp数组,dp[i]][0]表示第i列铺满,dp[i][1]表示第i列有一块。然后画图可得状态转移方程,注意不要重复计数。
代码:
class Solution {
public int numTilings(int N) {
if(N==1)
return 1;
if(N==2)
return 2;
if(N==3)
return 5;
long [][]dp=new long [N+1][2];
for(int i=0;i<=N;i++)
{
dp[i][0]=0;
dp[i][1]=0;
}
dp[1][0]=1;
dp[1][1]=0;
dp[2][0]=2;
dp[2][1]=2;
for(int i=3;i<=N;i++)
{
dp[i][0]=(int)((dp[i-1][0]+dp[i-1][1]+dp[i-2][0])%(1e9+7));
dp[i][1]=(int)((dp[i-2][0]*2+dp[i-1][1])%(1e9+7));
}
return (int)dp[N][0];
}
}
PS:本题还卡数据类型。。。。
