A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 6 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
题意:
一个含有n个元素的数组包含0-n-1这些数。乱序排列,集合s[i]包含nums[i],nums[nums[i]]……这些元素,求最大的集合s。
思路:
我只会O(n^2)的(o(╥﹏╥)o)。O(n)的做法是,遍历数组,因为能够如果t=nums[i],那么以t开始的肯定不是最长的集合。所以先遍历数组,将访问过的标记,直到访问已经标记的数,再求序列的最大值即可,因为不会重复访问已经标记的数,所以它只会遍历整个数组每个数一次,因此算法的时间复杂度是O(n)。
代码:
class Solution {
public int arrayNesting(int[] nums) {
int n=nums.length;
int maxn=0;
for(int i=0;i<n;i++)
{
if(nums[i]!=n)
{
int start=nums[i],count=0;
while(nums[start]!=n)
{
int temp=start;
start=nums[start];
count++;
nums[temp]=n;
}
maxn=Math.max(maxn,count);
}
}
return maxn;
}
}