Pytorch为CPU版或GPU使用报错异常处理
文章目录
最新买的4090d到货啦!开始快乐输出o( ̄▽ ̄)ブ
在进行实验时想把cpu版的yolov5使用gpu来跑,结果出了巨多麻烦!
首先是切换成gpu,把pytorch及yolov5全套都安装完毕后,就只剩最后一步了
打开train.py 搜索找到device,大概在400~500行之间将default参数改为device = “0”,注意加引号,后边代表的是不写就默认用cpu(慢的要死真的还容易炸掉),写0是使用1个gpu,10X的4G也挺难绷,但是跑是没问题,4090的24G相对很棒,但尺寸or参数太大还是会炸,而且会炸出来奇怪的异常,且按下不表。
改完后然后直接运行train.py,在输出阶段如果可以看到显卡型号和GPU,说明已经成功调用GPU了
那运算速度相当快:
但是!在此之前结果出现了错误,一大堆奇怪的报错
0.检查阶段
查看是否能使用gpu
import torch
torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1') # 分别是访问CPU,访问第0个GPU,访问第1个GPU。第 𝑖 块GPU( 𝑖 从0开始)
print(torch.cuda.device_count()) # 查询可用gpu的数量。
print(torch.cuda.is_available())# 查询gpu是否可用
看torch版本
import torch
print(torch.__version__)
1. 在conda虚拟环境中安装了torch
一般命令都可以正常使用,但是使用cuda的命令torch.cuda.is_available()则输出False。
该问题的根本原因是CUDA环境与Torch版本不匹配,因此最直接的解决方式就是使用官方推荐的版本进行适配。
查看本机安装的cuda版本,在虚拟环境下一定以nvcc -V查到的版本为主
nvcc -V
有些人可能只是cudatoolkit版本对不上,如果运气好,只针对cudatoolkit进行版本匹配即可完成,