论文阅读:Self-Supervised Video Representation Learning With Odd-One-Out Networks

这篇2017年CVPR论文介绍了使用Odd-One-Out网络进行无监督视频特征学习的方法,通过检测视频中帧的错误时序来训练模型,最终生成通用的视频表示,适用于动作识别等任务。研究包括三种采样策略和三种帧编码方式。

目录

Contributions

Method

1、Model

2、Three sampling strategies.

3、Video frame encoding.

Results

More Reference to Follow

 


 

论文名称:Self-Supervised Video Representation Learning With Odd-One-Out Networks(2017 CVPR)

论文作者:Basura Fernando, Hakan Bilen, Efstratios Gavves, Stephen Gould

下载地址:https://openaccess.thecvf.com/content_cvpr_2017/html/Fernando_Self-Supervised_Video_Representation_CVPR_2017_paper.html

 


 

Contributions

We propose a new self-supervised CNN pre-training technique based on a novel auxiliary task called odd-one-out learning. In this task, we sample subsequences from videos and ask the network to learn to predict the odd video subsequence. The odd video subsequence is sampled such that it has wrong temporal order of frames while the even ones have the correct temporal order. Our learning machine is implemented as multi-stream convolutional neural network, which is learned end-to-end. Using odd-one-out networks, we learn temporal representations for videos that generalizes to other related tasks such as action recognition.

 


 

Method

1、Model

O3N is composed of (N+1) input branches, each contains five Convolutional layers and weight

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值