论文阅读:Mining actionlet ensemble for action recognition with depth cameras

本文探讨了使用 commodity 深度传感器进行动作识别的方法,针对深度数据噪声和遮挡问题,提出了一种 actionlet ensemble 模型。通过提取关节相对位置(skeleton feature)、局部占用模式(LOP feature)和傅立叶时频金字塔(Fourier Temporal Pyramid)特征,增强了特征的鲁棒性和区分性。同时,通过挖掘区分性关节组合(actionlets)和多核 SVM 进行分类,提高了动作识别的准确性。

目录

Summary

Details

1、Invariant Features for 3D Joint Positions(skeleton feature)

具体怎么做

提取这个特征的好处

2、Local Occupancy Patterns(LOP feature)

设计这个特征的目的

具体怎么做

3、Fourier Temporal Pyramid

这么做的目的

具体怎么做

举个栗子

这么做的好处

4、Mining Discriminative Actionlets

具体怎么做

5、Learning Actionlet Ensemble

Thinking

 


 

论文名称:Mining actionlet ensemble for action recognition with depth cameras(2012 CVPR)

下载地址https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6247813

 


 

Summary

这是一篇对 skeleton data 用 handcrafted feature 做动作识别任务的文章。

 

作者这么做的 motivation 是:

The recently developed commodity depth sensors open up new possibilities of dealing with this problem but also present some unique challenges:The depth maps captured by the depth cameras are very noisy and the 3D positions ofthe tracked joints may be completely wrong if serious occlusions occur, which increases the intra-class variations in the actions.

 

于是,作者提出了一个 actionlet ensemble 的模型:

1、对每个节点提取 skeleton feature(the 3D joint position feature)oi 和 LOP(local occupancy pattern) feature pi,concatenate 起来作为每个节点的一个特征 gi。

2、再对每个节点进行 Fourier Temporal Pyramid 建模,得到每个节点包含时序维度的建模信息 Gi。

3、接着对每一个类别,挖掘有助于区分动作类别的节点组合 actionlets(一个 actionlets 定义为所有节点的一个子集,节点组合)。

4、最后对 actionlets 做一个多核 SVM(linear output),对动作进行分类。

 

 


 

Details

1、Invariant Features for 3D Joint Positions(skeleton feature)

 

具体怎么做

首先,each joint i has 3 coordinates pi(t) = (xi(t), yi(t), zi(t)) at a frame t. The coordinates are normalized so that the motion is invariant to the absolute body position, the initial body orientation and the body size.

接着,For each joint i, we extract the pairwise relative position features by taking the difference between the position of joint i and that of each other joint j:

 

The 3D joint feature for joint i is then defined as: pi

利用骨骼进行的人体行为识别, 基于LOP 的行为识别,可以运行 (action recognition) 文件列表: actionletEnsemble-master actionletEnsemble-master\.gitignore actionletEnsemble-master\LICENSE actionletEnsemble-master\MSRAction3D actionletEnsemble-master\MSRAction3D\MSRAction3D_skeleton_features.mat actionletEnsemble-master\MSRAction3D\evaluate_on_MSR_action_3D.m actionletEnsemble-master\MSRDailyActivity3D actionletEnsemble-master\MSRDailyActivity3D\configDailyAcitity.m actionletEnsemble-master\MSRDailyActivity3D\evaluate_on_MSR_DailyAcitivity3D.m actionletEnsemble-master\MSRDailyActivity3D\extractAllLopFeatures.m actionletEnsemble-master\MSRDailyActivity3D\extractAllSkeletonFeatures.m actionletEnsemble-master\MSRDailyActivity3D\processOneSkeleton.m actionletEnsemble-master\MSRDailyActivity3D\trainClassifier.m actionletEnsemble-master\README.md actionletEnsemble-master\feature actionletEnsemble-master\feature\computeMotionField.m actionletEnsemble-master\feature\computePairwiseJointPositions.m actionletEnsemble-master\feature\computeSOPFeaturesSkeleton.m actionletEnsemble-master\feature\compute_motion_descriptors.m actionletEnsemble-master\feature\compute_motion_maps.m actionletEnsemble-master\feature\fftPyramid.m actionletEnsemble-master\feature\getSopFeature.m actionletEnsemble-master\feature\lopFeature.m actionletEnsemble-master\feature\lopFeatureSkeleton.m actionletEnsemble-master\feature\sopFeatureSkeleton.m actionletEnsemble-master\setup_path.m actionletEnsemble-master\util actionletEnsemble-master\util\ComputeMotion.mexw64 actionletEnsemble-master\util\ReadDepthBin.mexa64 actionletEnsemble-master\util\ReadDepthBin.mexw64 actionletEnsemble-master\util\iSaveX.m actionletEnsemble-master\util\normalizeFeature.m actionletEnsemble-master\util\predict.mexa64 actionletEnsemble-master\util\readDepthBin.m actionletEnsemble-master\util\readSkeleton.m actionletEnsemble-master\util\train.mexa64
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值