In BerSoft nn programmers work, the programmer ii is characterized by a skill riri.
A programmer aa can be a mentor of a programmer bb if and only if the skill of the programmer aa is strictly greater than the skill of the programmer bb (ra>rb)(ra>rb) and programmers aa and bb are not in a quarrel.
You are given the skills of each programmers and a list of kk pairs of the programmers, which are in a quarrel (pairs are unordered). For each programmer ii, find the number of programmers, for which the programmer ii can be a mentor.
The first line contains two integers nn and kk (2≤n≤2⋅105(2≤n≤2⋅105, 0≤k≤min(2⋅105,n⋅(n−1)2))0≤k≤min(2⋅105,n⋅(n−1)2)) — total number of programmers and number of pairs of programmers which are in a quarrel.
The second line contains a sequence of integers r1,r2,…,rnr1,r2,…,rn (1≤ri≤109)(1≤ri≤109), where riri equals to the skill of the ii-th programmer.
Each of the following kk lines contains two distinct integers xx, yy (1≤x,y≤n(1≤x,y≤n, x≠y)x≠y) — pair of programmers in a quarrel. The pairs are unordered, it means that if xx is in a quarrel with yy then yy is in a quarrel with xx. Guaranteed, that for each pair (x,y)(x,y) there are no other pairs (x,y)(x,y) and (y,x)(y,x) in the input.
Print nn integers, the ii-th number should be equal to the number of programmers, for which the ii-th programmer can be a mentor. Programmers are numbered in the same order that their skills are given in the input.
4 2 10 4 10 15 1 2 4 3
0 0 1 2
10 4 5 4 1 5 4 3 7 1 2 5 4 6 2 1 10 8 3 5
5 4 0 5 3 3 9 0 2 5
In the first example, the first programmer can not be mentor of any other (because only the second programmer has a skill, lower than first programmer skill, but they are in a quarrel). The second programmer can not be mentor of any other programmer, because his skill is minimal among others. The third programmer can be a mentor of the second programmer. The fourth programmer can be a mentor of the first and of the second programmers. He can not be a mentor of the third programmer, because they are in a quarrel.
题意:一批人求出能做多少个人的师傅,能做师傅的条件是技能k比徒弟高且无争吵
题解: 结构体存一下每个人的序号和技能点,排一下序,求出每个人比他技能点低的人数(n方->nlog n->n),n方会超时,用dp思想n就行了,然后再通过吵架的--后就是结果了
代码:
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
int n,k;
const int M = 2e5+10;
struct Pr
{
int i, r;
}a[M],b[M];
int ans[M];
int v[M];
int cmp(Pr r1,Pr r2)
{
return r1.r<r2.r;
}
int main()
{
memset(ans,0,sizeof(ans));
memset(v,0,sizeof(v));
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i].r);
b[i].r= a[i].r;
a[i].i = i;
b[i].i = i;
}
sort(a+1,a+1+n,cmp);
/*超时
for(int i=1;i<=n;i++)
{
int p=i;
while(a[p+1].r==a[p].r)
{
p++;
}
ans[a[i].i] = n-p;
}
*/
ans[a[1].i] = 0;
for(int i=2;i<=n;i++)
{
if(a[i].r!=a[i-1].r)
ans[a[i].i] = i-1;
else
ans[a[i].i] = ans[a[i-1].i];
}
/*
for(int i=1;i<=n;i++)
{
cout<<ans[i]<<" ";
}
cout<<endl;
*/
for(int i=0;i<k;i++)
{
int s1,s2;
scanf("%d %d",&s1,&s2);
if(b[s1].r>b[s2].r)
ans[s1]--;
if(b[s1].r<b[s2].r)
ans[s2]--;
}
for(int i=1;i<=n;i++)
{
if(ans[i]<0)
ans[i] = 0;
if(i!=n)
printf("%d ",ans[i]);
else
printf("%d\n",ans[i]);
}
return 0;
}