51nod 1358 浮点型矩阵快速幂(板子

本文介绍了一种特殊的数列——浮波那契数列的定义及其计算方法。通过矩阵快速幂算法优化计算过程,使得即使对于极大的输入值也能高效得出结果。
基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注

TengBieBie已经学习了很多关于斐波那切数列的性质,所以他感到一些些厌烦。现在他遇到了一个新的数列,这个数列叫做Float-Bonacci。这里有一个关于Float-Bonacci的定义。


对于一个具体的n,TengBieBie想要快速计算FB(n).

但是TengBieBie对FB的了解非常少,所以他向你求助。

你的任务是计算FB(n).FB(n)可能非常大,请输出FB(n)%1,000,000,007 (1e9+7)即可。

Input
输入共一行,在一行中给出一个整数n (1<=n<=1,000,000,000)。
Output
对于每一个n,在一行中输出FB(n)%1,000,000,007 (1e9+7)。
Input示例
5
Output示例
2
G(n)=G(n-10)+G(n-34)
//china no.1
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
using namespace std;

#define pi acos(-1)
#define endl '\n'
#define rand() srand(time(0));
#define me(x) memset(x,0,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,-1,-1,1,1};
const int dy[]={0,1,0,-1,1,-1,1,-1};
const int maxn=1e3+5;
const int maxx=1e5+100;
const double EPS=1e-7;
const int MOD=10000007;
#define mod(x) ((x)%MOD);
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
//typedef tree<pt,null_type,less< pt >,rb_tree_tag,tree_order_statistics_node_update> rbtree;
long long gcd(long long a , long long b){if(b==0) return a;a%=b;return gcd(b,a);}
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define W while

inline int Scan()
{
    int res=0,ch,flag=0;
    if((ch=getchar())=='-')flag=1;
    else if(ch>='0' && ch<='9')res=ch-'0';
    while((ch=getchar())>='0'&&ch<='9')res=res*10+ch-'0';
    return flag ? -res : res;
}


LL a[maxx],bb[maxx],c[maxx],n,k,mod=1e9+7,t;
int ssize = 34;

struct Matrix
{
    LL  m[35][35];
    void init(){
        memset(m, 0, sizeof m);
    }
    void setOne()
    {
        init();
        for(int i=1;i<=ssize;i++) m[i][i]=1;
    }
    void unit()
    {
        m[1][10]=m[1][34] = 1;
        for(int i=1;i<=33;i++)
			m[i+1][i] = 1;
    }
    void print()
    {
        for(int i=1;i<=ssize;i++)
        {
            for(int j=1;j<=ssize;j++)
                cout << m[i][j] << " ";
            cout << endl;
        }
        cout << endl;
    }

} I,A,B,T,b,res;

Matrix Mul(Matrix a,Matrix b)  //
{
    int i,j,k;
    Matrix c;
    for(int i=1;i<=ssize;i++)
    {
        for(int j=1;j<=ssize;j++)
        {
            c.m[i][j]=0;
            for(int k=1;k<=ssize;k++)
            {
                c.m[i][j]+=(a.m[i][k]*b.m[k][j]);
                c.m[i][j]%=mod;
            }
        }
    }
    return c;
}

void quickPow(LL n)
{
    while(n)
    {
        if(n&1) res=Mul(res,b);
        n>>=1;
        b=Mul(b,b);
    }
}
int main()
{
    res.init();
    res.setOne();
    //res.print();
    cin>>n;
    if(n<=4)
    {
        puts("1");
        return 0;
    }
    n-=4;
    n*=10;
    b.unit();
    quickPow(n);
    LL ans=0;
    //res.print();
    FOR(1,34,i)
        ans+=res.m[1][i];
    cout<<ans%mod<<endl;
}


题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值