Description

Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6
0
树状数组
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define lowbit(x) (x&(-x))
#define ls(x) (x<<1)//尽量宏定义吧,不太容易出错
#define rs(x) (x<<1|1)
using namespace std;
typedef long long ll;
const int maxn=5e5+10;
struct node{
int val,id;
bool operator<(const node& b)const{
return val<b.val;
}
}val[maxn];
int aa[maxn];
ll tree[maxn];
int n;
void update(int val){
while(val<=n){
tree[val]+=1;
val+=lowbit(val);
}
}
ll query(int val){
ll ans=0;
while(val>0){
ans+=tree[val];
val-=lowbit(val);
}
return ans;
}
int main()
{
while(scanf("%d",&n)&&n){
for(int i=0;i<n;i++){
scanf("%d",&val[i].val);
val[i].id=i;
}
sort(val,val+n);
ll cnt=1;
aa[val[0].id]=cnt;
for(int i=1;i<n;i++){
if(val[i].val==val[i-1].val)
aa[val[i].id]=cnt;
else
aa[val[i].id]=++cnt;
}
memset(tree,0,sizeof(tree));
ll ans=0;
for(int i=0;i<n;i++){
update(aa[i]);
ans+=(i+1-query(aa[i]));
}
printf("%lld\n",ans);
}
return 0;
}