给定一个字符串S,比如它是(abcad),那么它的后缀有”abcad“ ,"bcad ", "cad", "ad", "d", ""。 讲这些后缀字符串按照字典序排序,得到的就是后缀数组。如果用普通的排序方法,排序要o(nlogn),但是每两个字符比较大小要O(n),所以是o(n × n log n)的复杂度。但是利用特殊的算法可以将其降到o(nlogn)。
该算法的思想是,先将每个后缀数组按照只考虑头一个字符,排序, 再将其按照只考虑头两个字符排序,然后是头4个,然后是8个,直到考虑n个。
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
#define Max_N (200000 + 100)
int n;
int k;
int rank1[Max_N], tmp[Max_N];
int sa[Max_N];// n为字符长度, rank1[[i] 表示的是以第i个字符开头的后缀数组的排名, sa[i] 是排在i位的后缀数组的开头字符的位置。
bool compare_sa(int i, int j)
{
if(rank1[i] != rank1[j]) return rank1[i] < rank1[j];
else {
int ri = i + k <= n ? rank1[i + k] : -1;
int rj = j + k <= n ? rank1[j + k] : -1;
return ri < rj;
}
}
void construct_sa(string buf)
{
n = buf.length();
for (int i = 0; i <= n; i++) {
sa[i] = i;
rank1[i] = i < n ? buf[i] : -1;
}
for ( k = 1; k <= n; k *= 2) {
sort(sa, sa + n +1, compare_sa);
tmp[sa[0]] = 0;
for (int i = 1; i <= n; i++) {
tmp[sa[i]] = tmp[sa[i-1]] + (compare_sa(sa[i-1], sa[i]) ? 1 : 0);
}
for (int i = 0; i <= n; i++) {
rank1[i] = tmp[i];
}
}
}
int main()
{
string str;
cin >> str;
construct_sa(str);
for (int i = 0; i <= n; i++) {
cout << sa[i] << endl;
}
cout << endl;
for (int i = 0; i <= n; i++) {
cout << rank1[i] << endl;
}
return 0;
}
cd3算法,没怎么理解, 所以只能照敲了模板,保存一发。
cd3的算法虽然是线性的o(n) 的,但是其前面的常数特别大而且会占用大量内存,相对于倍增算法的o(nlogn)优势也不是很大,只要题目不是特别特殊,倍增算法都可以解决。
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
#define Max_N 1000
#define F(x) ((x)/3+((x)%3==1?0:tb))
#define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
int wa1[Max_N*3], wb1[Max_N*3], wv1[Max_N*3], ws1[Max_N*3];
int c0(int *r, int a, int b)
{
return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2];
}
int c12(int k, int *r, int a, int b)
{
if(k == 2) return r[a] < r[b] || r[a] == r[b] && c12(1, r, a+1, b+1);
else return r[a] < r[b] || r[a] == r[b] && wv1[a+1] < wv1[b+1];
}
void sort(int *r, int *a, int *b, int n, int m)
{
int i;
for (i = 0; i < n; i++) wv1[i] = r[a[i]];
for (i = 0; i < m; i++) ws1[i] = 0;
for (i = 0; i < n; i++) ws1[wv1[i]]++;
for (i = 1; i < m; i++) ws1[i] += ws1[i-1];
for (i = n-1; i >= 0; i--) b[--ws1[wv1[i]]] = a[i];
return;
}
void dc3(int *r, int *sa, int n, int m)
{
int i, j, *rn = r + n, *san = sa + n,ta = 0,tb = (n + 1) / 3,tbc = 0,p;
r[n] = r[n+1] = 0;
for (i = 0; i < n; i++) if (i % 3 != 0) wa1[tbc++] = i;
sort(r+2, wa1, wb1, tbc, m);
sort(r+1, wb1, wa1, tbc, m);
sort(r, wa1, wb1, tbc, m);
for (p = 1,rn[F(wb1[0])] = 0,i = 1;i < tbc; i++)
rn[F(wb1[i])] = c0(r, wb1[i-1], wb1[i]) ? p - 1 : p++;
if (p < tbc) dc3(rn, san, tbc, p);
else for (i = 0; i < tbc; i++) san[rn[i]] = i;
for (i = 0; i < tbc; i++) if (san[i] < tb) wb1[ta++] = san[i] * 3;
if (n % 3 == 1) wb1[ta++] = n - 1;
sort(r, wb1, wa1, ta, m);
for (i = 0; i < tbc; i++) wv1[wb1[i] = G(san[i])] = i;
for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++)
sa[p] = c12(wb1[j] % 3, r, wa1[i], wb1[j]) ? wa1[i++] : wb1[j++];
for(; i < ta; p++) sa[p] = wa1[i++];
for(; j < tbc; p++) sa[p] = wb1[j++];
return;
}
// str sa 都要开三倍的;
void da(int str[], int sa[], int rank1[], int height1[], int n, int m)
{
for (int i = n; i < n*3; i++)
str[i] = 0;
dc3(str, sa, n+1, m);
int i, j, k = 0;
for (i = 0; i <= n; i++) rank1[sa[i]] = i;
for (i = 0; i < n; i++)
{
if (k) k--;
j = sa[rank1[i] - 1];
while (str[i+k] == str[j+k]) k++;
height1[rank1[i]] = k;
}
return;
}
int str[3*Max_N];
int sa[3*Max_N];
int rank1[3*Max_N];
int height1[3*Max_N];
int main()
{
char buf[100];
cin >> buf;
int n = strlen(buf);
//cout << n << endl;
int m = 128;
for (int i = 0; i < strlen(buf); i++)
str[i] = int(buf[i]);
str[n] = 0;
da(str, sa, rank1, height1, n, m);
for (int i = 0; i <= n; i++)
cout << sa[i] << endl;
return 0;
}