Leetcode,EditDistance
分析
设状态为 f[i][j],表示 A[0,i] 和 B[0,j] 之间的最小编辑距离。设 A[0,i] 的形式是 str1c,
B[0,j] 的形式是 str2d,
- 如果 c==d,则 f[i][j]=f[i-1][j-1];
- 如果 c!=d,
(a) 如果将 c 替换成 d,则 f[i][j]=f[i-1][j-1]+1;
(b) 如果在 c 后面添加一个 d,则 f[i][j]=f[i][j-1]+1;
© 如果将 c 删除,则 f[i][j]=f[i-1][j]+1;
力扣官方题解
ikaruga【编辑距离】入门动态规划,你定义的 dp 里到底存了啥
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 二维动规,时间复杂度 O(n*m),空间复杂度 O(n*m)
int solution(const string &word1, const string &word2)
{
const int n = word1.size();
const int m = word2.size();
vector<vector<int>> vec(n + 1, vector<int>(m + 1, 0));
for (int i = 0; i <= n; ++i)
vec[i][0] = i;
for (int j = 0; j <= m; ++j)
vec[0][j] = j;
for ( int i = 1; i <= n; ++i )
{
for ( int j = 1; j <= m; ++j)
{
if (word1[i - 1] == word2[j - 1])
vec[i][j] = vec[i - 1][j - 1];
else
{
int mn = std::min( vec[i - 1][j], vec[i][j - 1]);
vec[i][j] = 1 + std::min( vec[i - 1][j - 1], mn );
}
}
}
return vec[n][m];
}
//二维动规 + 滚动数组 时间复杂度 O(n*m),空间复杂度 O(n)
int solution1(const string &word1, const string &word2)
{
if (word1.length() > word2.length())
return solution1(word2, word1);
vector<int> vec(word2.length() + 1);
int upper_left = 0; //额外用一个变量记录 f[i-1][j-1]
for (int i = 0; i <= word2.size(); ++i)
vec[i] = i;
for ( int i = 1; i <= word1.size(); ++i )
{
upper_left = vec[0];
vec[0] = i;
for (int j = 1; j <= word2.size(); ++j)
{
int upper = vec[j];
if (word1[i - 1] == word2[j - 1])
vec[j] = upper_left;
else
vec[j] = 1 + std::min( upper_left, std::min(vec[j], vec[j - 1]));
upper_left = upper;
}
}
return vec[word2.length()];
}
int main()
{
{
string word1 = "horse", word2 = "ros";
cout << solution1(word1, word2) << endl; //3
}
{
string word1 = "intention", word2 = "execution";
cout << solution1(word1, word2) << endl; //5
}
return 0;
}