König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。
小白的我参考了好多网上的证明,迷迷糊糊算是明白了,决定从大牛手中的证明,加入自己的一些可以让人更加明白的见解!!!
假如我们已经通过匈牙利算法求出了最大匹配(假设它等于M),下面给出的方法可以告诉我们,选哪M个点可以覆盖所有的边。
匈牙利算法需要我们从右边的某个没有匹配的点(起始点),走出一条使得“一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出现”的路(交错轨,增广路)。但是,现在我们已经找到了最大匹配,已经不存在这样的路了。换句话说,我们能寻找到很多可能的增广路,但最后都以找不到“终点是还没有匹配过的点”而失败。我们给所有经过这条路上点打上记号(如上图粗线):从右边的所有没有匹配过的点出发,按照增广路的“交替出现”的要求可以走到的所有点(最后走出的路径是很多条不完整的增广路)。那么右边没有打上记号的点,加上左边已经有记号的点组成了最小覆盖点集:。看图,上图中展示了两条这样的路径,标记了一共6个点(用 “√”表示)。用红色圈起来的三个点就是我们的最小覆盖点集。
首先,为什么这样得到的点集点的个数恰好有M个呢?答案很简单,因为最小覆盖点集里的每个点都是某个匹配边的其中一个端点。如果右边的哪个点是没有匹配过的,那么它早就当成起点被标记了;如果左边的哪个点是没有匹配过的,那就走不到它那里去(否则就找到了一条完整的增广路)。而一个匹配边又不可能左端点是标记了的,同时