MATLAB算法实战应用案例精讲-【图像处理】SLAM技术详解(基础篇)

目录

几个高频面试题目

SLAM框架常见方案对比

点云数据

传感器

视觉SLAM框架

SLAM框架之视觉里程计

SLAM框架之后端

SLAM框架之回环检测

双目立体视觉的数学原理

双目立体视觉的数学原理

3D视觉方案

知识储备

即时定位与地图构建

应用案例

基于3D激光雷达的SLAM算法

SLAM前端

SLAM后端

 基于深度学习的3D激光SLAM算法

基于多传感器融合的3D激光SLAM算法

3D激光SLAM算法的发展趋势


 

几个高频面试题目

SLAM框架常见方案对比

点云数据

通过测量仪器获得 物体外观 的点数据的集合,叫点云。点云是在和目标表面特性的海量点集合。

点云是在和目标表面特性的海量点集合。
根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。
根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。
结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。
在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)。
点云的格式:; *.pts; *.asc ; *.dat; *.stl ;

随着激光雷达,RGBD相机等3D传感器在机器人,无人驾驶领域的广泛应用。针对三维点云数据的研究也逐渐从低层次几何特征提取(PFH,FPFH,VFH等)向高层次语义理解过渡(点云识别,语义分割)。与图像感知领域深度学习几乎一统天下不同,针对无序点云数据的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值