Python Leetcode980不同路径III

这篇博客讨论了一种使用回溯算法解决网格中从起点到终点的不同路径计数问题。给出了三种不同的实现方式,包括代码实现,强调了在原数组上修改已访问方格的方法。这些算法在处理路径计数时考虑了障碍物和特定起点、终点的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同路径III

看了某同学今天的华为机试题,发现其第三题就跟这题一样,于是拿出来做一做。
在这里插入图片描述
典型的回溯算法练习题,代码如下:

class Solution:
    def __init__(self):
        self.out = 0
    def uniquePathsIII(self, grid: List[List[int]]) -> int:
        dircetions = [(1, 0), (-1, 0), (0, 1), (0, -1)]
        m, n = len(grid), len(grid[0])
        res = 0
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 0:
                    res += 1
                if grid[i][j] == 1:
                    start = (i, j)
        visited = {start}
        self.backsearch(m, n, grid, visited, start[0], start[1], dircetions, res)
        return self.out
    def backsearch(self, m, n, grid, visited, i, j, dircetions, res):
        visited.add((i, j))
        if grid[i][j] == 2 and len(visited) == res + 2:
            return True
        for a, b in dircetions:
            i_new, j_new = a + i, b + j
            if 0 <= i_new < m and 0 <= j_new < n and (i_new, j_new) not in visited and grid[i_new][j_new] != -1:
                if self.backsearch(m, n, grid, visited | {(i_new, j_new)}, i_new, j_new, dircetions, res):
                    self.out += 1
        return False

别人的代码(可以打印路径):

class Solution:
    def uniquePathsIII(self, grid: List[List[int]]) -> int:
        m, n=len(grid),len(grid[0])
        obstacle=set()
        for i in range(m):
            for j in range(n):
                if grid[i][j]==1: 
                    start=(i,j)
                elif grid[i][j]==2:
                    end=(i,j)
                elif grid[i][j]==-1:
                    obstacle.add((i,j))
        total_step=n*m-len(obstacle)
        visited=set([start]) 
        res=[0]    
        direcs=[[-1,0],[1,0],[0,1],[0,-1]]
        def dfs(pos,path):
            if len(path)==total_step and pos==end:
                print(path)
                res[0]+=1
                return
            for dx, dy in direcs:
                x, y=pos[0]+dx, pos[1]+dy
                if 0<=x<m and 0<=y<n and (x,y) not in visited\
                    and (x,y) not in obstacle:
                    visited.add((x,y))
                    dfs((x,y), path+[(x,y)])
                    visited.remove((x,y))
        dfs(start,[start])
        return res[0]

直接在原数组上修改已访问的方格,将其设置为-1.

class Solution:
    def uniquePathsIII(self, grid):
        start, end, p = None, None, 1
        row, col = len(grid), len(grid[0])
        for i in range(row):
            for j in range(col):
                if grid[i][j] == 1:
                    start = i, j
                elif grid[i][j] == 2:
                    end = i, j
                elif grid[i][j] == 0:
                    p += 1   
        def dfs(x, y, p):
            if not (0 <= x < row and 0 <= y < col and grid[x][y] >= 0):
                return 0
            if end == (x, y) and p == 0:
                return 1
            grid[x][y] = -1
            res = dfs(x+1, y, p-1) + dfs(x, y+1, p-1) + dfs(x-1, y, p-1) + dfs(x, y-1, p-1)
            grid[x][y] = 0
            return res
        return dfs(start[0], start[1], p)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值