所有股票问题基本都可以使用动态规划进行求解。
本文所使用的动态规划方法均参考一下链接:
买卖股票专题讲解
买卖股票之只能一次交易
# # 一次遍历
# class Solution:
# def maxProfit(self, prices: List[int]) -> int:
# max_p = 0
# min_p = prices[0]
# for i in range(1, len(prices)):
# min_p = min(min_p, prices[i])
# max_p = max(prices[i] - min_p, max_p)
# return max_p
# #一维动态规划
# class Solution:
# def maxProfit(self, prices: List[int]) -> int:
# dp = [0 for _ in range(len(prices))]
# min_p = prices[0]
# for i in range(1, len(prices)):
# min_p = min(min_p, prices[i])
# dp[i] = max(dp[i - 1], prices[i] - min_p)
# return dp[-1]
# #二维动态规划
# class Solution:
# def maxProfit(self, prices: List[int]) -> int:
# dp = [[0] * 2 for _ in range(len(prices))]
# dp[0][0] = -prices[0]
# for i in range(1, len(prices)):
# dp[i][0] = max(dp[i - 1][0], - prices[i])
# dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
# return dp[-1][1]
# 单调栈
class Solution:
def maxProfit(self, prices: List[int]) -> int:
stack = [prices[0]]
ans = 0
for i in range(1, len(prices)):
if prices[i] > stack[-1]:
ans = max(prices[i] - stack[-1], ans)
else:
stack.append(prices[i])
return ans
买卖股票之可多次交易
# class Solution:
# def maxProfit(self, prices: List[int]) -> int:
# stack = [prices[0]]
# ans = 0
# for i in range(1, len(prices)):
# if stack[-1] <= prices[i]:
# stack.append(prices[i])
# else:
# ans += stack[-1] - stack[0]
# stack = [prices[i]]
# return ans + stack[-1] - stack[0]
# # 动态规划
# class Solution:
# def maxProfit(self, prices: List[int]) -> int:
# dp = [[0] * 2 for _ in range(len(prices))]
# dp[0][0] = -prices[0]
# for i in range(1, len(prices)):
# dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
# dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
# return dp[-1][1]
# 贪心
class Solution:
def maxProfit(self, prices: List[int]) -> int:
ans = 0
for i in range(1, len(prices)):
ans += max(prices[i] - prices[i - 1], 0)
return ans
注意:
在上一题的只能进行一次股票买卖题中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]) # 可进行多次买卖的代码
dp[i][0] = max(dp[i - 1][0], - prices[i]) # 只能进行一次买卖的代码
买卖股票之规定买卖次数
class Solution:
def maxProfit(self, prices: List[int]) -> int:
dp = [[0] * 4 for _ in range(len(prices))]
dp[0][0] = dp[0][2] = -prices[0]
for i in range(1, len(prices)):
dp[i][0] = max(dp[i - 1][0], -prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] - prices[i])
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] + prices[i])
return dp[-1][-1]
# 压缩
class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
dp = [0 for _ in range(4)]
dp[0] = dp[2] = -prices[0]
for i in range(1, n):
dp[0] = max(dp[0], -prices[i])
dp[1] = max(dp[1], dp[0] + prices[i])
dp[2] = max(dp[2], dp[1] - prices[i])
dp[3] = max(dp[3], dp[2] + prices[i])
return dp[3]
买卖股票之可变的买卖次数
# 二维数组DP
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices:
return 0
n = len(prices)
dp = [[0] * (2 * k + 1) for _ in range(n)]
for i in range(1, 2*k + 1, 2):
dp[0][i] = -prices[0]
for i in range(1, n):
for j in range(0, 2*k - 1, 2):
dp[i][j+1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])
return dp[-1][-1]
# 压缩
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices:
return 0
n = len(prices)
dp = [0] * (2 * k + 1) # 奇数时买入,偶数时卖出(除0外,0时表示没有进行任何操作)
for i in range(1, 2*k + 1, 2):
dp[i] = -prices[0]
for i in range(1, n):
for j in range(0, 2*k - 1, 2):
dp[j + 1] = max(dp[j + 1], dp[j] - prices[i])
dp[j + 2] = max(dp[j + 2], dp[j + 1] + prices[i])
return dp[-1]
# 创建buy和sell两个二维数组
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices:
return 0
n = len(prices)
k = min(k, n // 2) # 剪枝,买卖的最大次数为prices的长度值的一半
buy = [[0] * (k + 1) for _ in range(n)] # 由于k可能为1,即进行一次买卖,未来避免没有进行下面的嵌套循环,因此需要将k加一,此时下标0可以表示不进行操作时的值,下标k即表示第k(k>0)次买/卖后的值
sell = [[0] * (k + 1) for _ in range(n)] #这两行的赋值操作不要写成一行buy = sell = [[0] * (k + 1) for _ in range(n)],否则答案错误!
for i in range(k + 1):
buy[0][i] = -prices[0]
for i in range(1, n):
for j in range(1, k + 1):
buy[i][j] = max(buy[i - 1][j], sell[i - 1][j - 1] - prices[i])
sell[i][j] = max(sell[i - 1][j], buy[i - 1][j] + prices[i])
return max(sell[n - 1])
# 压缩
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if not prices:
return 0
n = len(prices)
k = min(k, n // 2)
buy = [0] * (k + 1)
sell = [0] * (k + 1) #这两行的赋值操作也不能写成一行,原理同上!
for i in range(1, k + 1): #为了便于理解,此处可以从1开始索引
buy[i] = -prices[0]
for i in range(1, n):
for j in range(1, k + 1):
buy[j] = max(buy[j], sell[j - 1] - prices[i])
sell[j] = max(sell[j], buy[j] + prices[i])
return sell[-1]
注意:
- 二维列表的创建时,不能进行如下操作:
dp = [[0] * n] *m
,该结果与dp = [[0] * n for _ in range(m)]
所产生的结果会不一样,因为[0] * n
操作产生了一个列表,此时再去进行* m
操作,是对所产生的列表进行地址复制,最后得到的二维列表的每一行实际都是第一行的列表值,改变其他行的列表值便会改变第一行的数值。 - 多个多维列表赋值时,也不能直接进行一次性赋值操作,即不能
buy = sell = [[0] * n for _ in range(m)]
,而应该分开赋值,原因同上面的一样,也是由于赋值的是地址。但单个的数值可以进行一次性赋值操作,即a = b = [0]
。 - 该题由于k不确定,可能为1,为了避免没有进行嵌套循环而得到结果0,我们可以多设置一个‘没有做任何操作(0表示)’,因此在创建列表时,状态个数为
2 * k + 1
,具体可以参照188股票买卖题解。
买卖股票之含冷冻期
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if not prices: return 0
n = len(prices)
dp = [[0] * 3 for _ in range(n)]
dp[0][0] = -prices[0]
# dp[i][0]:手上持有股票的最大收益
# dp[i][1]:手上不持有股票,并且处于冷冻期中的累计最大收益
# dp[i][2]:手上不持有股票,并且不在冷冻期中的累计最大收益
for i in range(1, n):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - prices[i])
dp[i][1] = dp[i - 1][0] + prices[i]
dp[i][2] = max(dp[i - 1][1], dp[i - 1][2])
return max(dp[-1][1], dp[-1][2])
class Solution:
def maxProfit(self, prices: List[int]) -> int:
if not prices: return 0
n = len(prices)
dp = [[0] * 3 for _ in range(n)]
dp[0][0] = -prices[0]
# dp[i][0]:买入
# dp[i][1]:卖出(可能含冷冻期)
# dp[i][2]:冷冻期
for i in range(1, n):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i])
dp[i][2] = dp[i - 1][1]
return dp[-1][1]
买卖股票之含手续费
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
if not prices: return 0
n = len(prices)
dp = [[0] * 2 for _ in range(n)]
dp[0][0] = -prices[0]
for i in range(1, n):
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee)
return dp[-1][1]
# 压缩
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
if not prices: return 0
n = len(prices)
dp = [-prices[0], 0]
for i in range(1, n):
dp[0] = max(dp[0], dp[1] - prices[i])
dp[1] = max(dp[1], dp[0] + prices[i] - fee)
return dp[1]