协同训练算法之co-training

本文介绍了半监督学习中的Co-training算法,通过两个不同视图的分类器互相协作的方式,利用未标记数据提高学习性能。适用于标记数据稀缺场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在传统的监督学习中,学习器通过对大量有标记的(labeled)训练例进行学习,从而建立模型用于预测未见示例的标记。这里的“标记”(label)是指示例所对应的输出,在分类问题中标记就是示例的类别。随着数据收集和存储技术的飞速发展,收集大量未标记的(unlabeled)示例已相当容易,而获取大量有标记的示例则相对较为困难,因为获得这些标记可能需要耗费大量的人力物力。如果只使用少量的有标记示例,那么利用它们所训练出的学习系统往往很难具有强泛化能力;另一方面,如果仅使用少量“昂贵的”有标记示例而不利用大量“廉价的”未标记示例,则是对数据资源的极大的浪费。因此,在有标记示例较少时,如何利用大量的未标记示例来改善学习性能已成为当前机器学习研究中最受关注的问题之一。目前,利用未标记示例的主流学习技术主要有三大类,即半监督学习(semi-supervisedlearning)、直推学习(transductive learning)和主动学习(active learning)

今天所介绍的

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值