题目描述
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
思路
动态规划常常适用于有重叠子问题和最优子结构性质的问题,并且记录所有子问题的结果,因此动态规划方法所耗时间往往远少于朴素解法。 动态规划有自底向上和自顶向下两种解决问题的方式。自顶向下即记忆化递归,自底向上就是递推。 使用动态规划解决的问题有个明显的特点,一旦一个子问题的求解得到结果,以后的计算过程就不会修改它,这样的特点叫做无后效性,求解问题的过程形成了一张有向无环图。动态规划只解决每个子问题一次,具有天然剪枝的功能,从而减少计算量。
— leetcode
状态转移方程如下:
dp [ i ] = min ( dp [ i − 1 ] + cost [ i − 1 ] , dp [ i − 2 ] + cost [ i − 2 ] ) \textit{dp}[i]=\min(\textit{dp}[i-1]+\textit{cost}[i-1],\textit{dp}[i-2]+\textit{cost}[i-2]) dp[i]=min(dp[i−1]+cost[i−1],dp[i−2]+cost[i−2])
代码实现
int minCostClimbingStairs(int* cost, int costSize){
int dp[costSize+1];
dp[0] = 0;
dp[1] = 0;
for(int i=2;i<=costSize;i++){
dp[i]=fmin(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[costSize];
}
时间复杂度: O(n)
空间复杂度: O(n)