决策树的基尼系数计算过程

决策树的基尼系数计算过程

1、基尼指数的计算

在介绍具体的计算之前,先从一个例子入手吧。

先看看下面这个数据,我们需要通过前三列的特征来推断出最后一列是yes,no

1、数据

Chest Pain Good Blood Circulation Blocked Arteries Heart Disease
No No No No
Yes Yes Yes Yes
Yes Yes No No
Yes No ??? Yes
etc… etc… etc… etc…

2、统计

  1. Chest Pain

    1. true

      Heart Disease

      1. Yes:105
      2. No:39
    2. false

      Heart Disease

      1. Yes:34
      2. No:125
  2. Good Blood Circulation

    1. true

      Heart Disease

      1. Yes:37
      2. No:127
    2. false

      Heart Disease

      1. Yes:100
      2. No:33
  3. Blocked Arteries

    1. true

      Heart Disease

      1. Yes:92
      2. No:31
    2. false

      Heart Disease

      1. Yes:45
      2. No:129

在统计数据的时候,若遇见缺失值,最简单的办法就是先跳过这个缺失值

从统计的数据可以看出,在某一特征的条件下,无论是true或者false都有患有Heart Disease的人,同时也都有健康的人。且这两个分布是不同,有的true中患有Heart Disease的多一些,有的false中患有Heart Disease的多一些,则就要引出另一个概念—纯度。刚刚将的那种情况其实就是不纯的,那么我们接下来的操作就是对其不断的提纯。

接下来引出基尼指数的概念:基尼指数遵循最小的准则,计算得到的基尼指数越小,则越纯。接下来则以该特征作为决策树的一个分支。但若当前节点的基尼指数小于待划分节点的基尼指数时,则不需要划分。

3、基尼指数的基本公式

Single_gini = 1 − ( a a + b ) 2 − ( b a +

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值