Pytorch多GPU并行处理

充分利用多 GPU 机器:torch.nn.DataParallel
Pytorch 的多 GPU 处理接口是 torch.nn.DataParallel(module, device_ids),其中 module 参数是所要执行的模型,而 device_ids 则是指定并行的 GPU id 列表。
而其并行处理机制是,首先将模型加载到主 GPU 上,然后再将模型复制到各个指定的从 GPU 中,然后将输入数据按 batch 维度进行划分,具体来说就是每个 GPU 分配到的数据 batch 数量是总输入数据的 batch 除以指定 GPU 个数。每个 GPU 将针对各自的输入数据独立进行 forward 计算,最后将各个 GPU 的 loss 进行求和,再用反向传播更新单个 GPU 上的模型参数,再将更新后的模型参数复制到剩余指定的 GPU 中,这样就完成了一次迭代计算。所以该接口还要求输入数据的 batch 数量要不小于所指定的 GPU 数量。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值