Generic_UNet(
(conv_blocks_localization): ModuleList(
(0): Sequential(
(0): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv): Conv3d(640, 320, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(instnorm): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lrelu): LeakyReLU(negative_slope=0.01, inplace=True)
)
)
)
(1): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv): Conv3d(320, 320, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(instnorm): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lrelu): LeakyReLU(negative_slope=0.01, inplace=True)
)
)
)
)
(1): Sequential(
(0): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv): Conv3d(640, 320, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(instnorm): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lrelu): LeakyReLU(negative_slope=0.01, inplace=True)
)
)
)
(1): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv): Conv3d(320, 320, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(instnorm): BatchNorm3d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lrelu): LeakyReLU(negative_slope=0.01, inplace=True)
)
)
)
)
(2): Sequential(
(0): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv): Conv3d(512, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))
(instnorm): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lrelu): LeakyReLU(negative_slope=0.01, inplace=True)
)
)
)
(1): StackedConvLayers(
(blocks): Sequential(
(0): ConvDropoutNormNonlin(
(conv)
nnunet网络块
最新推荐文章于 2024-10-25 21:24:02 发布