完整的神经网络样例程序(一)

本文介绍了一种使用TensorFlow构建神经网络的方法,通过随机初始化权重矩阵,定义占位符输入,实现前向传播和反向传播过程。采用交叉熵作为损失函数,使用Adam优化器进行训练,并展示了在随机生成数据上的训练效果。
import tensorflow as tf
from numpy.random import RandomState

w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))

batch_size=8
x=tf.placeholder(tf.float32,shape=(None,2),name="x-input")
y_=tf.placeholder(tf.float32,shape=(None,1),name="y-input")

a=tf.matmul(x,w1)
y=tf.matmul(a,w2)
y=tf.sigmoid(y)
cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0))+(1-y_)*tf.log(tf.clip_by_value(1-y,1e-10,1.0)))
train_step=tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
rdm=RandomState(1)
X=rdm.rand(128,2)
Y=[[int(x1+x2<1)]for(x1,x2)in X]

with tf.Session() as sess:
    init_op=tf.global_variables_initializer()
    sess.run(init_op)
    print(sess.run(w1))
    print(sess.run(w2))
    print("\n")

    STEPS=5000
    for i in range(STEPS):
        start=(i*batch_size)%128
        end=(i*batch_size)%128+batch_size
        sess.run([train_step,y,y_],feed_dict={x:X[start:end],y_:Y[start:end]})
        if i%1000==0:
            total_cross_entropy=sess.run(cross_entropy,feed_dict={x:X,y_:Y})
            print("After %d training step(s),cross entropy on all data is %g"%(i,total_cross_entropy))
    print("\n")
    print(sess.run(w1))
    print(sess.run(w2))






详细说明:几个神经网络算法的程,包括前向adaline, 共振art1, boltzman机, hopfield 网络, 自组织som 等等. 文件列表: Neural Networks at your Fingertips ..................................\ADALINE ..................................\.......\ADALINE.C ..................................\.......\ADALINE.EDT ..................................\.......\ADALINE.MAK ..................................\.......\ADALINE.MDP ..................................\.......\ADALINE.TXT ..................................\.......\RELEASE ..................................\ART1 ..................................\....\ART1.C ..................................\....\ART1.EDT ..................................\....\ART1.MAK ..................................\....\ART1.MDP ..................................\....\ART1.TXT ..................................\....\RELEASE ..................................\BAM ..................................\...\BAM.C ..................................\...\BAM.EDT ..................................\...\BAM.MAK ..................................\...\BAM.MDP ..................................\...\BAM.TXT ..................................\...\RELEASE ..................................\BOLTZMAN ..................................\........\BOLTZMAN.C ..................................\........\BOLTZMAN.EDT ..................................\........\BOLTZMAN.MAK ..................................\........\BOLTZMAN.MDP ..................................\........\BOLTZMAN.TXT ..................................\........\RELEASE ..................................\BPN ..................................\...\BPN.C ..................................\...\BPN.EDT ..................................\...\BPN.MAK ..................................\...\BPN.MDP ..................................\...\BPN.TXT ..................................\...\RELEASE ..................................\CPN ..................................\...\CPN.C ..................................\...\CPN.EDT ..................................\...\CPN.MAK ..................................\...\CPN.MDP ..................................\...\CPN.TXT ..................................\...\RELEASE ..................................\HOPFIELD ..................................\........\HOPFIELD.C ..................................\........\HOPFIELD.EDT ..................................\........\HOPFIELD.MAK ..................................\........\HOPFIELD.MDP ..................................\........\HOPFIELD.TXT ..................................\........\RELEASE ..................................\Neural Networks at your Fingertips.doc ..................................\SOM ..................................\...\RELEASE ..................................\...\SOM.C ..................................\...\SOM.EDT ..................................\...\SOM.MAK ..................................\...\SOM.MDP ..................................\...\SOM.TXT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值