给出一个无向图,要求求出最小的两个生成树。
难么即是求出最小生成树和次小生成树。
次小生成树的求解过程是,先求解最小生成树,再在树上深搜,处理出maxcost[u][v],表示树上u到v的路径上最大的边。然后枚举不在树上的边(i,j),去替换树上的i到j最大的边,求最小即是次小生成树。
#include<bits/stdc++.h>
using namespace std;
#define debug puts("Infinity is awesome!")
#define mm(a,b) memset(a,b,sizeof(a))
#define LS (root<<1)
#define RS (root<<1|1)
#define LSON LS,l,mid
#define RSON RS,mid+1,r
#define LL long long
#define rep(a,b,c) for(int a=b;a<c;a++)
const int Inf=1e9+7;
const int maxn=105;
const int maxc=102;
const int maxe=1e6+5;
const int mod=1e9+7;
const int maxsize=maxn*maxn;
struct HeapNode{
int u, d, eid;
HeapNode(){}
HeapNode(int a,int b,int c):u(a), d(b), eid(c){}
bool operator <(const HeapNode &rhs)const{
return d>rhs.d;
}
};
struct Edge{
int from, to, dist, next;
Edge(){}
Edge(int a,int b,int c,int d):from(a), to(b), dist(c), next(d){}
};
int n, m, ecnt;
Edge edges[maxe];
int head[maxn], vis[maxn];
int ontree[maxe];
void Init(){
ecnt=0;
mm(head,-1);
}
void Add_Edge(int u,int v,int w){
edges[ecnt]=Edge(u,v,w,head[u]);
head[u]=ecnt++;
}
int Prim(){
mm(vis,0); mm(ontree,0);
int cnt=0, sum=0;
priority_queue<HeapNode> Q;
Q.push(HeapNode(0,0,-1));
while(cnt<n&&!Q.empty()){
HeapNode x=Q.top(); Q.pop();
if(vis[x.u]) continue;
int u=x.u, eid=x.eid;
vis[x.u]=1;
if(eid!=-1){
sum+=x.d;
ontree[eid]=1;
ontree[eid^1]=1;
}
cnt++;
for(int i=head[u];i!=-1;i=edges[i].next){
Edge &e=edges[i];
if(!vis[e.to]) Q.push(HeapNode(e.to, e.dist, i));
}
}
return sum;
}
vector<int> nodes;
int maxcost[maxn][maxn];
void dfs(int u,int fa, int dist){
for(int i=0;i<nodes.size();i++){
int v=nodes[i];
maxcost[u][v]=maxcost[v][u]=max(maxcost[v][fa],dist);
}
nodes.push_back(u);
for(int i=head[u];i!=-1;i=edges[i].next)
if(ontree[i]){
Edge &e=edges[i];
if(e.to==fa) continue;
dfs(e.to,u,e.dist);
}
}
int main(){
int T;
int cas=0;
int u, v, w;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
Init();
for(int i=0;i<m;i++){
scanf("%d%d%d",&u, &v, &w);
u--, v--;
Add_Edge(u,v,w);
Add_Edge(v,u,w);
}
int ans1=Prim();
mm(maxcost,0);
nodes.clear();
dfs(0,-1,0);
int ans2=Inf;
for(int i=0;i<ecnt;i+=2)
if(!ontree[i]){
Edge &e=edges[i];
u=e.from;
v=e.to;
ans2=min(ans2, ans1-maxcost[u][v]+e.dist);
}
printf("%d %d\n",ans1, ans2);
}
return 0;
}