题目大意:给出一张图,问这张图的最小生成树的权值和次小生成树的权值,如果有两个最小生成树,则输出的权值都为最小生成树的权值
解题思路:先找出最小生成树,再标记一下形成最小生成树的树边,接着枚举那些不是树边的边
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
#define N 110
#define M 10010
#define INF 0x3f3f3f3f
struct Node{
int x, y;
}node[M];
int dis[N][N], d[N], f[N], maxcost[N][N];
int n, m;
bool mark[N], vis[N][N];
vector<int> v;
void init() {
scanf("%d%d", &n, &m);
memset(dis, 0x3f, sizeof(dis));
for (int i = 1; i <= n; i++)
dis[i][i] = 0;
int u, v, c;
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &u, &v, &c);
node[i].x = u; node[i].y = v;;
dis[u][v] = dis[v][u] = min(dis[u][v], c);
}
}
int Prim() {
for (int i = 1; i <= n; i++)
d[i] = INF;
memset(mark, 0, sizeof(mark));
memset(vis, 0, sizeof(vis));
d[1] = 0;
f[1] = 1;
v.clear();
int ans = 0;
for (int i = 1; i <= n; i++) {
int t = INF, x;
for (int j = 1; j <= n; j++)
if (!mark[j] && d[j] < t)
t = d[x = j];
mark[x] = vis[x][f[x]] = vis[f[x]][x] = true;
ans += dis[f[x]][x];
int size = v.size();
for (int j = 0; j < size; j++) {
maxcost[v[j]][x] = maxcost[x][v[j]] = max(maxcost[v[j]][f[x]], dis[f[x]][x]);
}
v.push_back(x);
for (int j = 1; j <= n; j++) {
if (!mark[j] && dis[x][j] < d[j]) {
d[j] = dis[x][j];
f[j] = x;
}
}
}
return ans;
}
void solve() {
int ans = Prim();
int ans2 = INF;
int x, y;
for (int i = 0; i < m; i++) {
x = node[i].x;
y = node[i].y;
if (!vis[x][y]) {
ans2 = min(ans2, ans - maxcost[x][y] + dis[x][y]);
}
}
printf("%d %d\n", ans, ans2);
}
int main() {
int test;
scanf("%d", &test);
while (test--) {
init();
solve();
}
return 0;
}