Colab使用
Google一系列产品都可以用用,Google Drive/Document/Keep/Gmail/Blogger
欢迎来到Colab
常用colab代码段
GPU设定:
修改 -> 笔记本设置 -> 硬件加速器,选择GPU,nvidia-smi查看
Jupyter notebook使用语法:
Jupyter Notebook的前身为Ipython Notebook
如果你想使用Python学习数据分析或数据挖掘,那么它应该是你第一个应该知道并会使用的工具,它很容易上手,用起来非常方便,是个对新手非常友好的工具。而事实也证明它的确很好用,在数据挖掘平台 Kaggle 上,使用 Python 的数据爱好者绝大多数使用 jupyter notebook 来实现分析和建模的过程,因此,如果你想学习机器学习,数据挖掘,那么这款软件你真的应该了解一下。
本篇博主总结了关于Jupyter notebook的一些关键点,帮助大家快速了解并使用它。
什么是Jupyter notebook?
Jupyter notebook 是一种 Web 应用,它能让用户将说明文本、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,非常方便研究和教学。在原始的 Python shell 与 IPython 中,可视化在单独的窗口中进行,而文字资料以及各种函数和类脚本包含在独立的文档中。但是,notebook 能将这一切集中到一处,让用户一目了然。
Jupyter notebook特别适合做数据处理,其用途可以包括数据清理和探索、可视化、机器学习和大数据分析。
Jupyter notebook是如何工作的?
Jupyter notebook 源于 Fernando Perez 发起的 IPython 项目。IPython 是一种交互式 shell,与普通的 Python shell 相似,但具有一些更高级的功能,例如语法高亮显示和代码补全,还有一些 magic 操作,十分方便。Jupyter notebook 将 IPython 做成了一种 Web 应用,我们可以通过它的基本架构更清楚的了解:
可以看到,这里的核心是 notebook 的服务器。用户通过浏览器连接到该服务器,而 notebook 呈现为 Web 应用。用户在 Web 应用中编写的代码通过该服务器发送给内核,内核运行代码,并将结果发送回该服务器。然后,任何输出都会返回到浏览器中。保存 notebook 时,它将作为 JSON 文件(文件扩展名为 .ipynb)写入到该服务器中。
此架构的一个优点是,内核无需运行 Python。由于 notebook 和内核分开,因此可以在两者之间发送任何语言的代码。例如,早期的两个非 Python 内核分别是 R 语言和 Julia 语言。使用 R 内核时,用 R 编写的代码将发送给执行该代码的 R 内核,这与在 Python 内核上运行 Python 代码完全一样。IPython notebook 已被改名,因为 notebook 变得与编程语言无关。新的名称 Jupyter 由Julia、Python 和 R 组合而成。
常用操作
打开jupyter编辑器
jupyter notebook