倒立摆_Q-Learning算法_边做边学深度强化学习:PyTorch程序设计实践(4)
0、相关系列文章
迷宫_随机实验_边做边学深度强化学习:PyTorch程序设计实践(1)
迷宫_Sarsa算法_边做边学深度强化学习:PyTorch程序设计实践(2)
迷宫_Q-Learning算法_边做边学深度强化学习:PyTorch程序设计实践(3)
倒立摆_DQN算法_边做边学深度强化学习:PyTorch程序设计实践(5)
1、Agent.py
import numpy as np
import Brain
# 倒立摆小推车对象
class Agent:
def __init__(self, num_states, num_actions):
# 为智能体创建大脑以作出决策
self.brain = Brain.Brain(num_states, num_actions)
# 更新Q函数
def update_Q_function(self, observation, action, reward, observation_next):
self.brain.update_Q_table(observation, action, reward, observation_next)
# 确定下一个动作
def get_action(self, observation, step):
action = self.brain.decide_action(observation, step)
return action
def print_Q(self):
self.brain.print_Q()
2、Brain.py
import numpy as np
import Brain
# 倒立摆小推车对象
class Agent:
def __init__(self, num_states, num_actions):
# 为智能体创建大脑以作出决策
self.brain = Brain.Brain(num_states, num_actions)
# 更新Q函数
def update_Q_function(self, observation, action, reward, observation_next):
self.brain.update_Q_table(observation, action, reward, observation_next)
# 确定下一个动作