F - An express train to reveries CodeForces - 814B (简单思维)

解决两组序列中各有一个错误元素的问题,通过统计分析找到正确的颜色排列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sengoku still remembers the mysterious "colourful meteoroids" she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.

On that night, Sengoku constructed a permutation p1, p2, ..., pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with nmeteorids, colours of which being integer sequences a1, a2, ..., an and b1, b2, ..., bnrespectively. Meteoroids' colours were also between 1 and n inclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Well, she almost had it all — each of the sequences a and b matched exactly n - 1elements in Sengoku's permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.

For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.

Input

The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku's permutation, being the length of both meteor outbursts at the same time.

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.

The third line contains n space-separated integers b1, b2, ..., bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Output

Output n space-separated integers p1, p2, ..., pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.

Input guarantees that such permutation exists.

Example
Input
5
1 2 3 4 3
1 2 5 4 5
Output
1 2 5 4 3
Input
5
4 4 2 3 1
5 4 5 3 1
Output
5 4 2 3 1
Input
4
1 1 3 4
1 4 3 4
Output
1 2 3 4
Note

In the first sample, both 1, 2, 5, 4, 3 and 1, 2, 3, 4, 5 are acceptable outputs.

In the second sample, 5, 4, 2, 3, 1 is the only permutation to satisfy the constraints.


题意:两串相同长度的数字,其中每串有一个数字是错的,让你找出对的数字串,所有数字都是小于等于n的。

思路:统计第一个串里的数字个数,再统计一下1到n里哪个数字没有出现,如果第一个串中某个数字出现了两次,那么其中有一个肯定是错的,该位上对的数字就是那个没有出现过的数字了。

#include<bits/stdc++.h>
using namespace std;
#define maxn 1005
int a[maxn],b[maxn];
int num[maxn];
int main()
{
    int n;
    int x;
    scanf("%d",&n);
    memset(num,0,sizeof(num));
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        num[a[i]]++;
    }
    for(int j=1;j<=n;j++){
        scanf("%d",&b[j]);
        if(num[j]==0) x=j;
    }
    int temp;
    int f;
    for(int i=1;i<=n;i++){
        if(num[a[i]]==2){
         temp=a[i];
         a[i]=x;
         f=0;
         for(int j=1;j<=n;j++)
            if(a[j]!=b[j]) f++;
            if(f==1){
                for(int k=1;k<=n;k++)
                cout<<a[k]<<" ";
                return 0;
            }
             a[i]=temp;
        }
    }
        cout<<endl;
}




内容概要:本文介绍了奕斯伟科技集团基于RISC-V架构开发的EAM2011芯片及其应用研究。EAM2011是一款高性能实时控制芯片,支持160MHz主频和AI算法,符合汽车电子AEC-Q100 Grade 2和ASIL-B安全标准。文章详细描述了芯片的关键特性、配套软件开发套件(SDK)和集成开发环境(IDE),以及基于该芯片的ESWINEBP3901开发板的硬件资源和接口配置。文中提供了详细的代码示例,涵盖时钟配置、GPIO控制、ADC采样、CAN通信、PWM输出及RTOS任务创建等功能实现。此外,还介绍了硬件申领流程、技术资料获取渠道及开发建议,帮助开发者高效启动基于EAM2011芯片的开发工作。 适合人群:具备嵌入式系统开发经验的研发人员,特别是对RISC-V架构感兴趣的工程师和技术爱好者。 使用场景及目标:①了解EAM2011芯片的特性和应用场景,如智能汽车、智能家居和工业控制;②掌握基于EAM2011芯片的开发板和芯片的硬件资源和接口配置;③学习如何实现基本的外设驱动,如GPIO、ADC、CAN、PWM等;④通过RTOS任务创建示例,理解多任务处理和实时系统的实现。 其他说明:开发者可以根据实际需求扩展这些基础功能。建议优先掌握《EAM2011参考手册》中的关键外设寄存器配置方法,这对底层驱动开发至关重要。同时,注意硬件申领的时效性和替代方案,确保开发工作的顺利进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值