来自:http://blog.youkuaiyun.com/a197p/article/details/48691245
Kurskal+二进制枚举子集的方法
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
struct point {
int x,y;
}pp[maxn];
struct edge{
int s,e,dist;
}l[maxn*maxn];
int q,n,m;
int p[maxn];
vector<int> g[10];
int c[10];
int distance_(point a,point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cmp(edge a,edge b){
return a.dist < b.dist;
}
int find_(int x){
return p[x]==x?x:p[x]=find_(p[x]);
}
bool merge_(int a,int b){
int x=find_(a);
int y=find_(b);
if(x==y) return false;
p[x]=y;
return true;
}
int kruskal(){
int ans=0;
int num=0;
for(int i=0;i<m&&num<n-1;i++){
if(merge_(l[i].s,l[i].e)){
num++;
ans+=l[i].dist;
}
}
return ans;
}
void solve(){
for(int i=0;i<=n;i++) p[i]=i;
int ans=kruskal();
for(int s=1;s<(1<<q);s++){
int cost=0;
for(int tt=0;tt<=n;tt++) p[tt]=tt;
for(int j=0;j<q;j++)
{
if(!((s>>j)&1)) continue;
cost+=c[j];
for(int k=0;k<g[j].size();k++)
{
merge_(g[j][k],g[j][0]);
}
}
ans=min(ans,cost + kruskal());
}
printf("%d\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&q);
for(int i=0;i<10;i++) g[i].clear();
for(int i=0;i<q;i++){
int cnt=0;
scanf("%d%d",&cnt,&c[i]);
int a;
for(int j=0;j<cnt;j++){
scanf("%d",&a);
g[i].push_back(a);
}
}
for(int i=1;i<=n;i++){
scanf("%d%d",&pp[i].x,&pp[i].y);
}
m=0;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++)
{
l[m].s=i;
l[m].e=j;
l[m++].dist=distance_(pp[i],pp[j]);
}
}
sort(l,l+m,cmp);
solve();
if(t) printf("\n");
}
return 0;
}