目标检测:COCO格式的txt文件转VOC格式的xml文件

1. COCO格式 vs VOC格式看这里

COCO2014据集:
在这里插入图片描述

VOC2007数据集:
在这里插入图片描述

txt文件(中心点坐标+宽高,相对值):

45 0.479492 0.688771 0.955609 0.595500 
45 0.736516 0.247188 0.498875 0.476417 
50 0.637063 0.732938 0.494125 0.510583 
45 0.339438 0.418896 0.678875 0.781500 
49 0.646836 0.132552 0.118047 0.096937 
49 0.773148 0.129802 0.090734 0.097229 
49 0.668297 0.226906 0.131281 0.146896 
49 0.642859 0.079219 0.148063 0.148062 

xml文件(左上角+右下角,真实值):

<annotation>
	<folder>VOC2007</folder>
	<filename>000001.jpg</filename>
	<source>
		<database>The VOC2007 Database</database>
		<annotation>PASCAL VOC2007</annotation>
		<image>flickr</image>
		<flickrid>341012865</flickrid>
	</source>
	<owner>
		<flickrid>Fried Camels</flickrid>
		<name>Jinky the Fruit Bat</name>
	</owner>
	<size>
		<width>353</width>
		<height>500</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>dog</name>
		<pose>Left</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>48</xmin>
			<ymin>240</ymin>
			<xmax>195</xmax>
			<ymax>371</ymax>
		</bndbox>
	</object>
	<object>
		<name>person</name>
		<pose>Left</pose>
		<truncated>1</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>8</xmin>
			<ymin>12</ymin>
			<xmax>352</xmax>
			<ymax>498</ymax>
		</bndbox>
	</object>
</annotation>

2. txt文件转为xml文件


import glob
import cv2

xml_head = '''<annotation>
    <folder>VOC2007</folder>
    <filename>{}</filename>.
    <source>
        <database>The VOC2007 Database</database>
        <annotation>PASCAL VOC2007</annotation>
        <image>flickr</image>
    </source>   
    <size>
        <width>{}</width>
        <height>{}</height>
        <depth>{}</depth>
    </size>
    <segmented>0</segmented>
    '''
xml_obj = '''
    <object>        
        <name>{}</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>{}</xmin>
            <ymin>{}</ymin>
            <xmax>{}</xmax>
            <ymax>{}</ymax>
        </bndbox>
    </object>
    '''
xml_end = '''
</annotation>'''

#--data
#----train 训练集图片
#----train_txt 对应的txt标签
#----train_xml 对应的xml标签

root='E:/pycharm_codes/data/'

txt_Lists = glob.glob(root +'train'+ '/*.jpg')
print(len(txt_Lists))
# print(txt_Lists)
cnt=0

for txt_path in txt_Lists:
    filename=txt_path.split('\\')
    filename=filename[-1]
    filename=filename.split('.')
    filename=filename[0]

    txt = root+'train_txt/'+filename+'.txt'
    jpg=root+'train/'+filename+'.jpg' #jpg path
    xml=root+'train_xml/'+filename+'.xml'

    print(txt)
    print(jpg)
    print(xml)

    obj = ''

    img = cv2.imread(jpg)
    img_h, img_w = img.shape[0], img.shape[1]

    print('h_factor:',img_h,'  w_factor:',img_w)
    # cv2.imshow("img", img)  #显示图片
    # cv2.waitKey(0)
    # cv2.destroyWindow("img")

    head = xml_head.format(str(filename), str(img_w), str(img_h), "3")

    with open(txt, 'r') as f:
        for line in f.readlines():
            yolo_datas = line.strip().split(' ')
            label = int(float(yolo_datas[0].strip()))
            center_x = round(float(str(yolo_datas[1]).strip()) * img_w)
            center_y = round(float(str(yolo_datas[2]).strip()) * img_h)
            bbox_width = round(float(str(yolo_datas[3]).strip()) * img_w)
            bbox_height = round(float(str(yolo_datas[4]).strip()) * img_h)

            xmin = str(int(center_x - bbox_width / 2))
            ymin = str(int(center_y - bbox_height / 2))
            xmax = str(int(center_x + bbox_width / 2))
            ymax = str(int(center_y + bbox_height / 2))

            obj += xml_obj.format(labels[label], xmin, ymin, xmax, ymax)

    with open(xml, 'w') as f_xml:
        f_xml.write(head + obj + xml_end)
    cnt += 1
    print(cnt)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值