使用下载的 fashion_mnist做个简单的视觉识别 网络
import tensorflow as tf
import numpy as np
# 获取数据集 从网上下载
mnist = tf.keras.datasets.fashion_mnist
(training_images,training_lables),(test_images,test_labels) = mnist.load_data()
# 展现获取的数据集
import matplotlib.pyplot as plt
plt.imshow(training_images[0])
# 训练标签
print(training_lables[0])
# 训练图像
print(training_images[0])
training_images = training_images /255.0
test_images = test_images / 255.0
# 建立神经网络
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation=tf.nn.relu),
tf.keras.layers.Dense(10,activation=tf.nn.softmax)])
# 优化器与损失函数编译
model.compile(optimizer= tf.keras.optimizers.Adam(),
loss = 'sparse_categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(training_images,training_lables,epochs=5)
# 检查模型正确
model.evaluate(test_images,test_labels)