(BFS)Knight Moves--HDOJ

本文介绍了一种使用广度优先搜索(BFS)算法解决国际象棋骑士从一个位置到另一个位置所需的最少移动次数的问题。通过定义骑士的合法移动方式及边界条件,实现了有效的路径查找。

Knight Moves
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 671 Accepted Submission(s): 480

Problem Description
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the “difficult” part.

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b.

Input
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard.

Output

        For each test case, print one line saying "To get from xx to yy takes n knight moves.".

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

Source
University of Ulm Local Contest 1996

Recommend
Eddy

总结:
国际象棋中哈骑士的走法,共有八种

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<math.h>
#define PI acos(-1.0)
#define eps 0.00000001

using namespace std;
typedef struct Node
{
    int x,y,step;
    Node()
    {
        step = 0;
    }
}Node;
int stx,sty,edx,edy;
int vis[10][10];
int dirx[8] = {-2,-2,-1,-1,2,2,1,1};
int diry[8] = {-1,1,-2,2,1,-1,-2,2};
int BFS()
{
    memset(vis,0,sizeof(vis));
    queue<Node > q;
    Node tmp,nxt,t;
    t.x = stx,t.y=sty;
    q.push(t);
    vis[t.x][t.y] = 1;
    while(!q.empty())
    {
        tmp = q.front();
        q.pop();

        for(int i=0; i<8; ++i)
        {
            int xx = tmp.x + dirx[i];
            int yy = tmp.y + diry[i];
            if(xx<1||xx>8||yy<1||yy>8) continue;
            if(vis[xx][yy]) continue;

            nxt.x = xx,nxt.y = yy,nxt.step = tmp.step+1;
            vis[xx][yy] = 1;
            if(xx == edx && yy == edy)
            {
                return nxt.step;
            }
            q.push(nxt);
        }
    }
    return 0;
}

int main(void)
{
  //  freopen("in.txt","r",stdin);
    string s1,s2;
    while(cin >> s1 >> s2)
    {
        stx = s1[1]-'0';
        sty = s1[0]-'a'+1;
        edx = s2[1]-'0';
        edy = s2[0]-'a'+1;
        int ans;
        if(stx==edx && sty==edy)
            ans = 0;
        else
            ans = BFS();
      //  cout << s1 <<endl;
        cout<<"To get from "<<s1<<" to "<<s2<<" takes "<<ans<<" knight moves."<<endl;
    }

    return 0;
}
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值