复振幅透过率:
t(x0,y0)=[12+m2cos(2πf0x0)]⋅rect(x0l)rect(y0l)t(x0,y0)=[12+m2cos(2πf0x0)]⋅rect(x0l)rect(y0l)
m≤1m≤1称为光栅的调制度
证明:用单位振幅的单色平面光波垂直照明该光栅,可得光栅的频谱为:
T(fx,fy)=l22sinc(lfy)⋅{sinc(lfx)+m2⋅sinc[l(fx+f0)]+m2⋅sinc[l(fx−f0)]}T(fx,fy)=l22sinc(lfy)⋅{sinc(lfx)+m2⋅sinc[l(fx+f0)]+m2⋅sinc[l(fx−f0)]}
证明:
令
f(x,y)=12+m2cos(2πf0x0)g(x,y)=rect(x0l)rect(y0l)t(x,y)=f(x,y)⋅g(x,y)(1)(2)(3)(4)(5)(1)f(x,y)=12+m2cos(2πf0x0)(2)(3)g(x,y)=rect(x0l)rect(y0l)(4)(5)t(x,y)=f(x,y)⋅g(x,y)
分别对f(x)和g(x)作傅里叶变换得:
F(fx,fy)=12δ(fx,fy)+m4[δ(fx+f0,fy)+δ(fx−f0,fy)]G(fx,fy)=l2⋅sinc(lfx)sinc(lfy)T(fx,fy)=F(fx,fy)∗G(fx,fy)(6)(7)(8)(9)(10)(6)F(fx,fy)=12δ(fx,fy)+m4[δ(fx+f0,fy)+δ(fx−f0,fy)](7)(8)G(fx,fy)=l2⋅sinc(lfx)sinc(lfy)(9)(10)T(fx,fy)=F(fx,fy)∗G(fx,fy)
任意函数f(x,y)f(x,y)与δδ函数卷积,结果是函数f(x,y)f(x,y)本身
f(x,y)∗δ(x,y)=∬∞−∞f(ξ,η)δ(ξ−x,η−y)dξdη=f(x,y)(11)(12)(13)(11)f(x,y)∗δ(x,y)=∬−∞∞f(ξ,η)δ(ξ−x,η−y)dξdη(12)(13)=f(x,y)
将上式简单推广得到f(x,y)∗δ(x−x0,y−y0)=f(x−x0,y−y0)f(x,y)∗δ(x−x0,y−y0)=f(x−x0,y−y0),这表明δδ函数平移多少距离,原函数就要平移多少距离。
所以
T(fx,fy)=F(fx,fy)∗G(fx,fy)={12δ(fx,fy)+m4[δ(fx+f0,fy)+δ(fx−f0,fy)]}∗[l2⋅sinc(lfx)sinc(lfy)]=l22⋅sinc(lfx)sinc(lfy)+m4⋅l2sinc[l(fx+f0)]sinc(lfy)+m4⋅l2sinc[l(fx−f0)]sinc(lfy)=l22⋅sinc(lfy)⋅{sinc(lfx)+m2⋅sinc[l(fx+f0)]+m2⋅sinc[l(fx−f0)]}(14)(15)(16)(17)(18)(19)(20)(14)T(fx,fy)=F(fx,fy)∗G(fx,fy)(15)(16)={12δ(fx,fy)+m4[δ(fx+f0,fy)+δ(fx−f0,fy)]}∗[l2⋅sinc(lfx)sinc(lfy)](17)(18)=l22⋅sinc(lfx)sinc(lfy)+m4⋅l2sinc[l(fx+f0)]sinc(lfy)+m4⋅l2sinc[l(fx−f0)]sinc(lfy)(19)(20)=l22⋅sinc(lfy)⋅{sinc(lfx)+m2⋅sinc[l(fx+f0)]+m2⋅sinc[l(fx−f0)]}
证明完毕
附件:
1、δ(t)δ(t) 的傅里叶变换,由δδ函数的筛选特性可得:
∫∞−∞δ(t)e−j2πftdt=1∫−∞∞δ(t)e−j2πftdt=1
2、cos(2πf0x)cos(2πf0x)的傅里叶变换:
F[cos(2πf0x)]=∫∞−∞[cos(2πf0x)]⋅e−j2πfxdx=∫∞−∞12(e−j2πf0x+ej2πf0x)⋅e−j2πfxdx=12⋅∫∞−∞e−j2π(f+f0)x+e−j2π(f−f0)xdx=12⋅[δ(f+f0)+δ(f−f0)](21)(22)(23)(24)(25)(26)(27)(21)F[cos(2πf0x)]=∫−∞∞[cos(2πf0x)]⋅e−j2πfxdx(22)(23)=∫−∞∞12(e−j2πf0x+ej2πf0x)⋅e−j2πfxdx(24)(25)=12⋅∫−∞∞e−j2π(f+f0)x+e−j2π(f−f0)xdx(26)(27)=12⋅[δ(f+f0)+δ(f−f0)]
3、rect(x)rect(x)的傅里叶变换:
F[rect(x)]=∫∞−∞rect(x)⋅e−j2πfxdx=∫12−12e−j2πfxdx=e−j2πfx−j2πf|12−12=e−j2πf−ej2πf−j2πf=sin(πf)πf=sinc(f)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37)(38)(28)F[rect(x)]=∫−∞∞rect(x)⋅e−j2πfxdx(29)(30)=∫−1212e−j2πfxdx(31)(32)=e−j2πfx−j2πf|−1212(33)(34)=e−j2πf−ej2πf−j2πf(35)(36)=sin(πf)πf(37)(38)=sinc(f)