Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:
9
这样就避免了寻找0的位置和0归位后第一个不归位的数字
#include <cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
int main() {
int n;
cin>>n;
int a[100001];
int cnt=0;
for(int i=0;i<n;i++){
int num;
scanf("%d",&num);
a[num]=i;
if(a[num]==num) cnt++;
}
int sum=0;
int index=0;
while(cnt<n-1){
if(a[0]==0){
for(;index<n;index++){
if(index!=a[index]){
swap(a[0],a[index]);
sum++;
break;
}
}
}
while(a[0]!=0){
swap(a[0],a[a[0]]);
sum++;
cnt++;
}
// cout<<cnt<<endl;
}
cout<<sum;
return 0;
}