题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=120197#problem/U
Digits of Factorial
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Submit
Status
Description
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Sample Output
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
————————————————————
题目大意 : 就是求n!在base进制下表示 不算前导0的话 有多少位
多少位的话 直接取log即可
但是n大了 long long 会爆 所以
拆成
log(n!)=log(n)+log(n-1)+ …. (以上底数为base).
因为计算机中只有底数为十的对数函数 所以 表示成lg(n!)/lg(base) 就行
最后n==0 的时候要特判一下.
———————-
上面就是题解了
但是 我做的时候出现了 迷之RE+迷之WA
RE : printf(“Case %d: %.0llf\n”,++p,f[n]/log(base)+0.5);
这么输出居然是RE
于是又换了一种
WA:printf(“Case %d: %d\n”,++p,(int)(f[n]/log(1.0*base)+0.5));
这样居然是WA ?我就不明白了
最后还是看别人代码 用的ceil() 才过的 但这到底是为什么啊啊啊啊啊啊啊啊啊
最终过得姿势 ::: printf(“Case %d: %d\n”,++p,(int)ceil(f[n]/log(1.0*base)))
附本题代码
——————————————
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <malloc.h>
#include <ctype.h>
#include <math.h>
#include <string>
#include <iostream>
#include <algorithm>
#include <map>
#include <vector>
#include <set>
using namespace std;
#define LL long long int
double f[1001110];
int main()
{
f[0]=0;
for(int i=1;i<=1000010;i++)
{
f[i]=f[i-1]+log(1.0*i);
}
int t,p=0,n,base;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&base);
if(n==0)
{
printf("Case %d: 1\n",++p);
continue;
}
printf("Case %d: %d\n",++p,(int)ceil(f[n]/log(1.0*base)));
}
return 0;
}