【Ligth-oj】-1045 - Digits of Factorial(数论,log,好)

本文介绍了一种算法,用于计算给定整数阶乘在特定进制下表示时的位数。通过预先计算并存储对数值,该算法能够快速找出阶乘在目标进制下的位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1045 - Digits of Factorial
Time Limit: 2 second(s)Memory Limit: 32 MB

Factorial of an integer is defined by the following function

f(0) = 1

f(n) = f(n - 1) * n, if(n > 0)

So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

Input

Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

Output

For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

Sample Input

Output for Sample Input

5

5 10

8 10

22 3

1000000 2

0 100

Case 1: 3

Case 2: 5

Case 3: 45

Case 4: 18488885

Case 5: 1




题意:就是给你一个数n,求出他的阶乘,把阶乘转换成k进制会有多少位。如5!=120,120化为8进制就是170,有3位


题解:把一个十进制数怎么换成k进制呢?就是每次除以k得到的余数就是一位。如:120换成8进制。120%8=0,120/8=15;

15%8=7,15/8=1;

1%8=1,1/8=0;那么就是170了(倒着写)

n!<=k^m,求出最小的m就是换算出k进制有多少位了。

1*2*384*......*n=k^m两边分别取对数得:log1+log2+log3+......+logn=m*logk;

那么m=(log1+log2+log3+......+logn)/(logk)

前面log1+....logn可以先打出来

AC代码:

<span style="font-size:10px;">#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(a,b) memset(a,b,sizeof(a))
#define LL long long
double a[1000010];
void init()
{
	a[1]=0;
	for(int i=2;i<=1000000;i++)
		a[i]=a[i-1]+log((double)i);		//求出 n!取对数的值 
} 
int main()
{
	int u,ca=1;
	init();
	scanf("%d",&u);
	while(u--)
	{
		int n,k;
		scanf("%d%d",&n,&k);
		printf("Case %d: ",ca++);
		if(n==0)
			printf("1\n");
		else
		{
			double ans;
			ans=a[n]/(log((double)k));
			if(ans!=(int)ans)		
				ans=(int)ans+1;
			printf("%.lf\n",ans);
		}
	}
	return 0;
}</span><span style="font-size:18px;">
</span>



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值