1. Linear regression
1.1 代码
#!/usr/bin/python3.5
import numpy as np
import tensorflow as tf
# Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# training data
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x:x_train, y:y_train})
# evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
1.2 结果
W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11
2 ReLU
2.1 基本概念
科学家提出的神经元激活模型
ReLU激活函数以及Softplus激活函数
ReLU是一个简单的非线性函数y = max(0, x),非常类似人脑的阈值响应机制。
(Softplus是ReLU的圆滑版,公式为:g(x)=log(1+e^x),从上面的结果看,效果比ReLU稍差)
信号在超过某个阈值时,神经元才会进入兴奋和激活的状态
sigmod会存在一个问题,就是一个深层的神经网络,后面层的参数会改变的很快,迅速收敛,以至于前面的层参数都没来得及改变,提前终止。
ReLU可以解决这个梯度消失的问题
2.2 代码
#!/usr/bin/python3.5
import numpy as np
import tensorflow as tf
import tensorflow as tf
output = None
hidden_layer_weights = [
[0.1, 0.2, 0.4],
[0.4, 0.6, 0.6],
[0.5, 0.9, 0.1],
[0.8, 0.2, 0.8]]
out_weights = [
[0.1, 0.6],
[0.2, 0.1],
[0.7, 0.9]]
# Weights and biases
weights = [
tf.Variable(hidden_layer_weights),
tf.Variable(out_weights)]
biases = [
tf.Variable(tf.zeros(3)),
tf.Variable(tf.zeros(2))]
# Input
features = tf.Variable([[1.0, 2.0, 3.0, 4.0], [-1.0, -2.0, -3.0, -4.0], [11.0, 12.0, 13.0, 14.0]])
# Create Model
hidden_layer = tf.add(tf.matmul(features, weights[0]), biases[0])
hidden_layer = tf.nn.relu(hidden_layer)
logits = tf.add(tf.matmul(hidden_layer, weights[1]), biases[1])
# Print session results
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(logits))
2.3 运行结果
[[ 5.11000013 8.44000053]
[ 0. 0. ]
[ 24.01000214 38.23999786]]