Square

本文探讨了使用不同长度的棍子能否拼接成正方形的问题。通过递归深度优先搜索算法,结合剪枝策略,有效地解决了该问题。文章提供了一个完整的C++实现案例。

Square
Time Limit : 10000/5000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 31 Accepted Submission(s) : 7
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
Given a set of sticks of various lengths, is it possible to join them end-to-end to form a square?

Input
The first line of input contains N, the number of test cases. Each test case begins with an integer 4 <= M <= 20, the number of sticks. M integers follow; each gives the length of a stick - an integer between 1 and 10,000.

Output
For each case, output a line containing “yes” if is is possible to form a square; otherwise output “no”.

Sample Input
3
4 1 1 1 1
5 10 20 30 40 50
8 1 7 2 6 4 4 3 5

Sample Output
yes
no
yes
//减掉最大值超过平均值,和sum无法整除的情况,然后每次当前值=aver时count+1就行了,当count==4时结束,否则dfs。

#include<iostream>
#include<cstdio>
#define max(a,b) (a)>(b)?(a):(b)
using namespace std;

int str[23],n,sum,aver,maxn;
bool vist[23],flag;
void dfs(int mySum,int Count,int t)
{
    if(mySum==aver)
    {
       Count++;
       if(Count==4)
       {
          flag=true;
          return;
       }
       else mySum=0;
       t=0;

    }
    if(flag) return;
    for(int i=t;i<n;i++)
    {
       if(!vist[i]&&mySum+str[i]<=aver)
       {
          vist[i]=true;
          dfs(mySum+str[i],Count,i);
          vist[i]=false;
       }
    }

}
int main()
{
   int T,i;
   scanf("%d",&T);
   while(T--)
   {
      scanf("%d",&n);
      sum=maxn=0;
      for(i=0;i<n;i++)
      {
         scanf("%d",&str[i]);
         sum+=str[i];
         maxn=max(str[i],maxn);
         vist[i]=false;
      }
      if(sum%4!=0||maxn>sum/4)//简单判断、不满足的直接给出结果
          printf("no\n");
      else
      {
         flag=false;
         aver=sum/4;
         dfs(0,0,0);
         if(flag) printf("yes\n");
         else printf("no\n");
      }
   }
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值