机器学习模型的误差分析-逼近误差、泛化误差、优化误差

逼近误差

模型最好能逼近真实模型到什么程度
考虑target function和能从假设空间中学到的the best function的距离
而已经证明一层隐藏层(+一层输出层)也能很好地拟合任何函数。XOR问题不能被单独一层网络解决。

泛化误差

泛化即推广能力。
考虑在假设空间中的best function和可以从数据集中学到的best function之间的距离。

优化误差

因为优化问题带来的误差。
即从能数据集中学到的best function和使用该算法从数据集中学到的best function之间的距离。
在这里插入图片描述
上图是一个很形象的示意图。实际目标函数是f*,而在函数集里能找到的最好的是f_D,而在数据集里能训练得到的最好的是f_s,而通过优化算法能找到的最好的是f_h。这其中分别就是逼近误差、泛化误差和优化误差。

参考资料

数学学院本科课程:统计计算与机器学习1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值