leecode_236 Lowest Common Ancestor of a Binary Tree

本文介绍了一种解决二叉树中寻找两节点最低公共祖先(LCA)问题的方法。通过广度优先搜索(BFS)和递归两种方式,找到了两节点路径上的最后一个共同节点。并提供了详细的C++实现代码。

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”

        _______3______
       /              \
    ___5__          ___1__
   /      \        /      \
   6      _2       0       8
         /  \
         7   4

For example, the lowest common ancestor (LCA) of nodes 5 and 1 is 3. Another example is LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

思路是找到两个点的路径,然后找最后一个相同的点:

c++实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        
        vector< vector<TreeNode*> > path=bfs(root,p,q);
        
        TreeNode* LCA;
        
        for (int i=0;i<min( path[1].size(), path[0].size() );i++){
            if (path[0][i]==path[1][i])
                LCA=path[0][i];
            else
               break;
        }
        
        return LCA;
    }
    
    vector< vector<TreeNode*> > bfs(TreeNode* root, TreeNode* p, TreeNode* q){
        queue<vector<TreeNode*>> que;
        vector<TreeNode*> path;
        vector< vector<TreeNode*> > res;
        path.push_back(root);
        if (root==p || root==q)
            res.push_back(path);
        que.push(path);
        
        while(!que.empty()){
            vector<TreeNode*> temp=que.front();
            que.pop();
            int len=temp.size();
            TreeNode* node=temp[len-1];
            
            
            
            
            if (node->left!=NULL){
                temp.push_back(node->left);
                que.push(temp);
                if (node->left==p || node->left==q)
                      res.push_back(temp);
                if (res.size()==2)
                      return res;
                temp.erase(temp.begin()+len);
            }
            
            if (node->right!=NULL){
                temp.push_back(node->right);
                que.push(temp);
                if (node->right==p || node->right==q)
                      res.push_back(temp);
                if (res.size()==2)
                      return res;
                temp.erase(temp.begin()+len);
            }
        }
        
        return res;
        
    }
};

递归法:

参考LeetCode Discuss

链接地址:https://leetcode.com/discuss/45386/4-lines-c-java-python-ruby

如果当前节点为空或者与目标节点之一相同,则返回当前节点

递归寻找p和q在左右子树中的位置

如果p和q分别位于root的左右两侧,则root为它们的LCA,否则为左子树或者右子树

TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
  if (!root || root == p || root == q) return root;
  TreeNode* left = lowestCommonAncestor(root->left, p, q);
  TreeNode* right = lowestCommonAncestor(root->right, p, q);
  return !left ? right : !right ? left : root;
}




以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值