移动硬盘实际使用空间比文件大小大一倍,大家有见过这种情况吗?

文章讨论了用户发现移动硬盘的实际使用空间比文件大小多出一倍的现象,引发关于存储技术或计算方法的疑问,探讨可能的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

移动硬盘实际使用空间比文件大小大一倍,大家有见过这种情况吗?

以下是搜索到的quantile g-computation模型分析混合物暴露的R语言教程: 1. "Quantile g-computation for causal inference with a mixture of exposures: an application to persistent organic pollutants and gestational diabetes" by Erin Bakshis Ware and Bhramar Mukherjee. This paper provides a step-by-step guide to implementing the quantile g-computation model in R for analyzing the causal effect of a mixture of exposures on gestational diabetes. 2. "Causal inference for mixtures of exposures using the quantile g-computation formula" by Tyler J. VanderWeele. This tutorial provides an overview of the quantile g-computation model and its application to analyzing the causal effect of a mixture of exposures, with examples in R. 3. "Causal Inference for a Mixture of Exposures using the Quantile G-computation Formula: Application to Sugar-sweetened Beverage Consumption and Body Mass Index in Children" by Andrea B. Troxel and David A. Berrigan. This paper provides a practical guide to implementing the quantile g-computation model in R for analyzing the causal effect of a mixture of exposures on body mass index in children. 4. "Quantile g-computation for causal inference in the presence of measurement error" by Mark J. van der Laan and Sherri Rose. This tutorial provides an overview of the quantile g-computation model and its application to analyzing the causal effect of a mixture of exposures in the presence of measurement error, with examples in R. 这些教程可以帮助你了解如何使用R语言实现quantile g-computation模型来分析混合物暴露的因果效应。注意,这些教程可能需要一定的统计学知识和R编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值