交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

计算公式:

def calculateIoU(candidateBound, groundTruthBound):
cx1 = candidateBound[0]
cy1 = candidateBound[1]
cx2 = candidateBound[2]
cy2 = candidateBound[3]
gx1 = groundTruthBound[0]
gy1 = groundTruthBound[1]
gx2 = groundTruthBound[2]
gy2 = groundTruthBound[3]
carea = (cx2 - cx1) * (cy2 - cy1) #C的面积
garea = (gx2 - gx1) * (gy2 - gy1) #G的面积
x1 = max(cx1, gx1)
y1 = max(cy1, gy1)
x2 = min(cx2, gx2)
y2 = min(cy2, gy2)
w = max(0, abs(x2 - x1))
h = max(0, abs(y2 - y1))
area = w * h #C∩G的面积
iou = area / (carea + garea - area)
return iou
转载地址:https://blog.youkuaiyun.com/mdjxy63/article/details/79343733

本文详细解释了目标检测领域中交并比(IoU)的概念,它是衡量候选框与真实标记框重叠程度的重要指标。通过计算IoU,可以评估检测模型的准确性,最理想的情况是IoU值达到1,表示两个框完全重合。
2万+

被折叠的 条评论
为什么被折叠?



