>> type(np.newaxis) NoneType
np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。
1. np.newaxis 的实用
>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,) >> x[:, np.newaxis] array([[0], [1], [2]]) >> x[:, None] array([[0], [1], [2]]) >> x[:, np.newaxis].shape (3, 1)
2. 索引多维数组的某一列时返回的是一个行向量
>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10]) % 这里是一个行 >>> X[:, 1].shape % X[:, 1] 的用法完全等同于一个行,而不是一个列, (3, )
所以,一种正确的索引方式是:
>>>X[:, 1][:, np.newaxis]
array([[2],
[6],
[10]])
如果想实现第二列和第四列的拼接(层叠):
>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])
% hstack:horizontal stack,水平方向上的层叠 >>>X_sub array([[2, 4] [6, 8] [10, 12]])
本文介绍了numpy中np.newaxis的功能及其等价物None在数组操作中的应用,包括如何增加维度、索引多维数组的列及进行列拼接。
1523

被折叠的 条评论
为什么被折叠?



